Abstract:
We disclose methods, apparatus, and systems for improving semiconductor device writeability through bias temperature instability. Such a device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line comprises a supply voltage line (VCS) which supplies voltage to each latch of a first number of cells; an array VCS driver electrically connected to each VCS; and a control line configured to provide an operational array supply voltage, a first array supply voltage, or a second array supply voltage to each VCS through the array VCS driver.
Abstract:
At least one method and system involves performing a time-dependent dielectric breakdown (TDDB) test and a bias temperature instability (BTI) test on a device. A device having at least one transistor and at least one dielectric layer is provided. A test signal is provided for performing a TDDB test and a BTI test on the device. The TDDB test and the BTI test are performed substantially simultaneously on the device based upon the test signal. The data relating to a breakdown of the dielectric layer and at least one characteristic of the transistor based upon the TDDB test and the BTI test is acquired, stored, and/or transmitted.
Abstract:
At least one method and system disclosed herein involves testing of integrated circuits. A device having at least one transistor and at least one dielectric layer is provided. A first voltage is provided during a first time period for performing a stress test upon the device. A second voltage is provided during a second time period for discharging at least a portion of the charge built-up as a result of the first voltage. The second voltage is of an opposite polarity of the first voltage. A sense function is provided during a third time period for determining a result of the stress test. Data relating to a breakdown of the dielectric layer based upon the result of the stress test is acquired, stored and/or transmitted.
Abstract:
We disclose methods, apparatus, and systems for improving semiconductor device writeability through bias temperature instability. Such a device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line comprises a supply voltage line (VCS) which supplies voltage to each latch of a first number of cells; an array VCS driver electrically connected to each VCS; and a control line configured to provide an operational array supply voltage, a first array supply voltage, or a second array supply voltage to each VCS through the array VCS driver.
Abstract:
A method and an apparatus for identifying non-intrinsic defect bits from a population of failing bits for failure analysis to characterize the extrinsic failure mechanisms is provided. Embodiments include performing a failure mode test on a bank of a memory array at different low VDD; determining optimal bank size to observe plateaus of fail counts; determining fail counts of the bank at each different low VDD; determining a plateau of the fail counts; determining whether the plateau represents extrinsic bits of the bank; and submitting the extrinsic bits for root cause analysis.
Abstract:
At least one method and system disclosed herein involves performing a time-dependent dielectric breakdown (TDDB) test and a bias temperature instability (BTI) test on a device. A device having at least one transistor and at least one dielectric layer is provided. A test signal is provided for performing a TDDB test and a BTI test on the device. The TDDB test and the BTI test are performed substantially simultaneously on the device based upon the test signal. The data relating to a breakdown of the dielectric layer and at least one characteristic of the transistor based upon the TDDB test and the BTI test is acquired, stored, and/or transmitted.
Abstract:
Method, apparatus, and system for improving semiconductor device writeability at row/bit level through bias temperature instability. Such a device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line comprises a supply voltage line (VCS) which supplies voltage to each latch of a first number of cells; an array VCS driver electrically connected to each VCS; and a control line configured to provide an operational array supply voltage, a first array supply voltage, or a second array supply voltage to each VCS, wherein the first array supply voltage and the second array supply voltage are greater than the operational array supply voltage. By virtue of BTI, application of the first array supply voltage may lead to improved writeability of one or more cells of the device.
Abstract:
We disclose methods, apparatus, and systems for improving semiconductor device writeability through bias temperature instability. Such a device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line comprises a supply voltage line (VCS) which supplies voltage to each latch of a first number of cells; an array VCS driver electrically connected to each VCS; and a control line configured to provide an operational array supply voltage, a first array supply voltage, or a second array supply voltage to each VCS through the array VCS driver.
Abstract:
Wafer test structures and methods of providing wafer test structures are described. The methods include: fabricating multiple test devices and multiple fuse devices on the wafer, each test device having a respective fuse device associated therewith, which open circuits upon failure of the test device; and fabricating a selection circuit operative to selectively connect one test device to a sense contact pad, and the other test devices to a stress contact pad. The selection circuit facilitates sensing one or more electrical signals of the one test device by electrical contact with the sense contact pad, while stress testing the other test devices by electrical contact with the stress contact pad. In one embodiment, each test device has respective first and second switch devices, operative to selectively electrically connect the test device to the sense or stress contact pads. In another embodiment, the method includes wafer testing using the test structure.
Abstract:
We disclose methods, apparatus, and systems for improving semiconductor device yield and/or reliability through bias temperature instability (BTI). One device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line controls access to each pass gate of a first number of cells; a word line driver electrically connected to each word line; and a control line configured to provide an operational write voltage or a first write voltage to each word line through the word line driver. By virtue of BTI, application of the first write voltage may lead to improved stability of data desired to be read from one or more cells of the device.