Engine and coolant system control systems and methods

    公开(公告)号:US10794253B2

    公开(公告)日:2020-10-06

    申请号:US16009355

    申请日:2018-06-15

    Abstract: A coolant control system of a vehicle includes a coolant pump that pumps coolant to a second radiator that is different than a first radiator that receives coolant from an engine of the vehicle. A diesel exhaust fluid (DEF) injector injects a DEF into an exhaust system and receives coolant output from the second radiator. A fuel heat exchanger transfers heat between coolant and fuel flowing therethrough. An engine control module is configured to determine a temperature of the DEF injector, control a duty cycle of the coolant pump, determine a vaporized condition of the coolant based on a DEF injector temperature, optionally further, in response to determining a vaporized condition of the coolant, implement a vapor purge by oscillating the duty cycle of the coolant pump, and optionally further identify a low-coolant condition of the coolant control system based on the vapor purges implemented during a time period.

    ENGINE AND COOLANT SYSTEM CONTROL SYSTEMS AND METHODS

    公开(公告)号:US20190383187A1

    公开(公告)日:2019-12-19

    申请号:US16009355

    申请日:2018-06-15

    Abstract: A coolant control system of a vehicle includes a coolant pump that pumps coolant to a second radiator that is different than a first radiator that receives coolant from an engine of the vehicle. A diesel exhaust fluid (DEF) injector injects a DEF into an exhaust system and receives coolant output from the second radiator. A fuel heat exchanger transfers heat between coolant and fuel flowing therethrough. An engine control module is configured to determine a temperature of the DEF injector, control a duty cycle of the coolant pump, determine a vaporized condition of the coolant based on a DEF injector temperature, optionally further, in response to determining a vaporized condition of the coolant, implement a vapor purge by oscillating the duty cycle of the coolant pump, and optionally further identify a low-coolant condition of the coolant control system based on the vapor purges implemented during a time period.

    SYSTEMS AND METHODS FOR DETERMINING IRREGULAR FUEL REQUESTS DURING ENGINE IDLE CONDITIONS

    公开(公告)号:US20190323446A1

    公开(公告)日:2019-10-24

    申请号:US15960893

    申请日:2018-04-24

    Abstract: Methods for determining an irregular fuel request (IFR) for vehicle engines coupled to driveshafts via clutched transmissions are provided and include: determining an idle condition of the engine, generating one or more fuel requests during the idle condition, and determining an IFR based on a clutch control parameter and a fuel request generated during the idle condition. The idle condition of the engine is determined based on a vehicle speed and an engine speed if the vehicle speed and engine speed are below respective thresholds. An IFR is determined if a fuel request falls outside a range, and/or if the clutch control parameter is such that the clutch does not substantially impart load to the engine. The idle fuel request range is determined based on a combustion mode of the engine and/or a gear state of the transmission. The method further includes implementing a control action after determining an IFR.

    Systems and methods for determining irregular fuel requests during engine idle conditions

    公开(公告)号:US10801433B2

    公开(公告)日:2020-10-13

    申请号:US15960893

    申请日:2018-04-24

    Abstract: Methods for determining an irregular fuel request (IFR) for vehicle engines coupled to driveshafts via clutched transmissions are provided and include: determining an idle condition of the engine, generating one or more fuel requests during the idle condition, and determining an IFR based on a clutch control parameter and a fuel request generated during the idle condition. The idle condition of the engine is determined based on a vehicle speed and an engine speed if the vehicle speed and engine speed are below respective thresholds. An IFR is determined if a fuel request falls outside a range, and/or if the clutch control parameter is such that the clutch does not substantially impart load to the engine. The idle fuel request range is determined based on a combustion mode of the engine and/or a gear state of the transmission. The method further includes implementing a control action after determining an IFR.

    FUEL STRAINER
    7.
    发明申请
    FUEL STRAINER 审中-公开

    公开(公告)号:US20200088145A1

    公开(公告)日:2020-03-19

    申请号:US16132818

    申请日:2018-09-17

    Abstract: An exemplary fuel filtering assembly includes a housing having a sidewall, a first surface, a strainer element, a first orifice, and a second orifice. The sidewall and the first surface define a fluid well. The strainer element is disposed in the fluid well and the first orifice and the second orifice are disposed in a channel defined by a first flow guidance member, a second flow guidance member, and a flow separating member. The first orifice is positioned at a first end of the channel and the second orifice is positioned at a second end of the channel opposite the first end and the first orifice is separated from the second orifice by the flow separating member.

    ENGINE AND COOLANT SYSTEM CONTROL SYSTEMS AND METHODS

    公开(公告)号:US20190211740A1

    公开(公告)日:2019-07-11

    申请号:US15868298

    申请日:2018-01-11

    Abstract: A coolant control system of a vehicle includes a coolant pump that pumps coolant to a heat exchanger. A diesel exhaust fluid (DEF) injector injects a DEF into an exhaust system and receives coolant output from the heat exchanger. A fuel heat exchanger transfers heat between coolant and fuel flowing through the fuel heat exchanger. An engine control module is configured to determine a first requested speed for DEF injector cooling, determine a second requested speed for fuel cooling, and based on at least one of the first and second requested speeds, selectively increase at least one of: opening of a valve that controls a flow rate of fuel flowing from the fuel rail to the fuel tank, a flow rate of fuel from fuel injectors of an engine to the fuel tank, and a target speed of the coolant pump.

Patent Agency Ranking