Abstract:
The indexing self-aligning hardware tool can join components and includes a first tool section including a die carrier, one or more dies coupled to the die carrier, and a first locator coupled to the die carrier. The indexing self-aligning hardware tool also includes a second tool section having a support body, one or more blankholders coupled to the support body, one or more punches movably disposed inside the blankholders, and a second locator coupled to the support body. The first locator and the second locator are configured to mate with a product feature locator of a component to align the first tool section relative to the second tool section.
Abstract:
An energy management system for a vehicle includes a load-bearing component operatively positioned in a wheel cavity rearward of a tire and wheel assembly in the wheel cavity. The load-bearing component is configured to limit movement of the tire and wheel assembly in the wheel cavity under a load applied to the vehicle forward of the tire and wheel assembly and offset from a longitudinal centerline of the vehicle.
Abstract:
A tether hook bracket for a vehicle subjectable to an external force event, followed by a rebound event, and having a body structure and a child seat connectable to the body structure via a tether having a tether hook includes a body structure attachment portion, a tether hook connection portion, and a tether hook rebound blocker portion. The body structure attachment portion is configured to be attachable to the body structure. The tether hook connection portion is configured to receive the tether hook, such that the tether hook is connected to the tether hook bracket. The tether hook rebound blocker portion is disposed between the body structure attachment portion and the tether hook connection portion and is configured to maintain the connection of the tether hook to the tether hook bracket when the vehicle is subjected to the rebound event.
Abstract:
An energy management system for a vehicle includes a load-bearing component operatively positioned in a wheel cavity rearward of a tire and wheel assembly in the wheel cavity. The load-bearing component is configured to limit movement of the tire and wheel assembly in the wheel cavity under a load applied to the vehicle forward of the tire and wheel assembly and offset from a longitudinal centerline of the vehicle.
Abstract:
A panel assembly is formed by a plurality of bonds between two sheet materials in a face to face relationship to form a preform. The plurality of bonds define a closed perimeter region between the two sheet materials and an open perimeter region between the two sheet materials. The preform may be formed into a predefined shape. Pressurized fluid is applied through an inlet into the open perimeter region to expand the preform. The pressurized fluid expands the open perimeter region such that the two sheet materials expand in an opposing direction, thereby defining an expanded open perimeter region. The closed perimeter region between the two sheet materials remains vacant of the pressurized fluid such that the closed perimeter region is not expanded. The expanded open perimeter region is filled with a filler material for improving a performance characteristic of the panel assembly, e.g., strength, sound absorption, or stiffness.
Abstract:
A repair system includes a scanning system configured for determining a contour of a void surface. The repair system also includes an additive manufacturing system configured for sequentially printing a plurality of individual layers each disposed on one another adjacent the void surface according to the contour. A method of repairing a substrate having a damaged portion defining a void and having the void surface is also disclosed.
Abstract:
A fastenerless anti-peel adhesive joint includes a first part having a first surface and forming a first anti-peel feature including a first anti-peel surface, a second part having a second surface and forming a second anti-peel feature including a second anti-peel surface, and an adhesive disposed between the first and second surfaces and within the first and second anti-peel features. The adhesive connects the parts via adhesive bonds at the first and second surfaces and at the first and second anti-peel surfaces. The first and second anti-peel features are configured to load the adhesive bonds at the first and second anti-peel surfaces in shear stress when the fastenerless anti-peel adhesive joint is subjected to a peel force that is normal to the first and second surfaces such that the shear strength of the adhesive bonds at the first and second anti-peel surfaces prevents the parts from being peeled apart.
Abstract:
A visual inspection method includes the following steps: (a) placing a material between a pair of parts, wherein at least one of the pair of parts defines at least one thru-hole sized to partly receive the material; (b) pressing the pair of parts together until the material is partly displaced into the thru-hole (or merely moving the pair of parts toward each other until the material is partly displaced into the thru-hole); and (c) visually inspecting the one thru-hole to verify that the material is partly disposed in the thru-hole after pressing the pair of parts together (or moving the pair of parts toward each other).
Abstract:
A method of injecting a liquid between a first panel and a second panel positioned flat against each other includes providing a tool defining an internal passageway having an inlet and an outlet. The first panel and the second panel are separated with the tool, to form a pocket between the first panel and the second panel, such that the outlet of the passageway is positioned in fluid communication with the pocket. A liquid source is connected to the inlet of the passageway to supply a liquid to the passageway. The liquid is injected into the pocket formed between the first panel and the second panel through the outlet of the passageway of the tool. The pocket is compressed or flattened to wet-out the liquid. The pocket may be compressed with the separating and injecting tool, or with a different device, such as a compressor or clamp.
Abstract:
A panel assembly is formed by a plurality of bonds between two sheet materials in a face to face relationship to form a preform. The plurality of bonds define a closed perimeter region between the two sheet materials and an open perimeter region between the two sheet materials. The preform may be formed into a predefined shape. Pressurized fluid is applied through an inlet into the open perimeter region to expand the preform. The pressurized fluid expands the open perimeter region such that the two sheet materials expand in an opposing direction, thereby defining an expanded open perimeter region. The closed perimeter region between the two sheet materials remains vacant of the pressurized fluid such that the closed perimeter region is not expanded. The expanded open perimeter region is filled with a filler material for improving a performance characteristic of the panel assembly, e.g., strength, sound absorption, or stiffness.