Abstract:
A method for controlling a vehicle transmission includes electrically connecting a Transmission or Powertrain Control Unit (TCU or PCU) to the vehicle transmission, the TCU or PCU controlling operation of the transmission and having switchable power on a high side, and switchable ground on a low side of a plurality of solenoids in a shared functional grouping configuration, proportionally controlling an amount of current through a load such as a solenoid via controlling an amount of time current is being sunk through the solenoid to ground and controlling an amount of time current is provided via an adaptable recirculation path in the TCU or PCU, the recirculation path minimizing current decay when the solenoid is driven in an OFF state. The TCU or PCU having a single hardware layout, but being electronically adaptable to control a plurality of transmission types and solenoid architectures based on any desired functional solenoid grouping.
Abstract:
A first high side switch is configured to connect and disconnect a first reference potential to and from a first node, the first node configured to be electrically connected to a second node and a first end of a first inductor coil of a fuel injector of a cylinder and a first end of a second inductor coil of an oil control valve of the cylinder. A second high side switch is configured to connect and disconnect a second reference potential to and from the second node. A first low side switch is configured to connect and disconnect a ground reference potential to and from a second end of the second inductor coil of the oil control valve. A second low side switch is configured to connect and disconnect the ground reference potential to and from a second end of the first inductor coil of the fuel injector.
Abstract:
A control module includes an input module configured to operate in a normal operating state and a fault diagnosis state. The input module receives an input signal from a circuit module and generates a voltage based on the input signal. In the normal operating state, a fault diagnostic module determines whether the voltage is in a first range or a second range. The first range and the second range indicate that a fault is detected in the circuit module. The fault diagnostic module determines that the detected fault is a first fault type if the voltage is in the first range, transitions the input module from the normal operating state to the fault diagnosis state if the voltage is in the second range, and determines whether the detected fault is a second fault type or a third fault type based on the voltage in the fault diagnosis state.
Abstract:
A system and method for selective reset of a sensor powered from a common power supply. The system includes a power supply, a plurality of sensors, each sensor connected to the power supply, responsive to the power supply, configured to detect a sensed parameter and provide a signal corresponding to the parameter. The system also includes a transimpedance current limiting device connected in series with a sensor of the plurality of sensors that limits current from the sensor, a switching device connected in series with the transimpedance current limiting device, that is controllable to interrupt current flow through the sensor, and a controller connected to the plurality of sensors, the controller monitors various signals from at least one sensor and controls the switching device based on those signals, wherein the controller deactivates the switching device if the current from the sensor exceeds a selected threshold.
Abstract:
A method is provided for operating a three step camshaft system during engine position sensor fault conditions. The three step camshaft has multiple cam actuators each having an actuator pin. The method includes: disposing multiple camshaft barrels on a camshaft, each barrel having a slot receiving the actuator pin of a cam actuator during camshaft barrel rotation axially displacing each camshaft barrel to a high lift lobe position, a low lift lobe position and an active fuel management (AFM) lobe position; determining if an engine position sensor is in a fault condition; identifying if the fault condition occurs simultaneously with any of the camshaft barrels positioned in the AFM lobe position; energizing selected cam actuators in communication with the camshaft barrels positioned in the AFM lobe position to axially displace the camshaft barrel away from the AFM lobe position and to the low lift lobe position.
Abstract:
A system according to the principles of the present disclosure includes a first solenoid control module, a fault diagnostic module, and a second solenoid control module. The first solenoid control module controls a plurality of solenoids to shift gears in a transmission. The fault diagnostic module diagnosis a fault in a transmission control system based on an operating parameter of the transmission control system. The second solenoid control module selectively controls the plurality of solenoids to shift gears in the transmission when a fault in the transmission control system is diagnosed.
Abstract:
A method is provided for operating a three step camshaft system during engine position sensor fault conditions. The three step camshaft has multiple cam actuators each having an actuator pin. The method includes: disposing multiple camshaft barrels on a camshaft, each barrel having a slot receiving the actuator pin of a cam actuator during camshaft barrel rotation axially displacing each camshaft barrel to a high lift lobe position, a low lift lobe position and an active fuel management (AFM) lobe position; determining if an engine position sensor is in a fault condition; identifying if the fault condition occurs simultaneously with any of the camshaft barrels positioned in the AFM lobe position; energizing selected cam actuators in communication with the camshaft barrels positioned in the AFM lobe position to axially displace the camshaft barrel away from the AFM lobe position and to the low lift lobe position.
Abstract:
A method of determining a sliding camshaft actuator pin position based on engine crankshaft angle includes commanding a sliding camshaft actuator to perform a valve step shift, and monitoring an actuator's pin position during the valve step shift command. At least one crank angle is measured when the actuator pin position reaches or exceeds at least one predetermined pin position threshold and at least one remedial action is performed when the actuator pin position does not correlate to the at least one measured crank angle.
Abstract:
A method of noise filtering a sliding camshaft actuator pin position output signal includes determining an actual pin position output signal period of a sliding camshaft actuator that occurs within a predetermined output signal period measurement window and establishing a pin position output signal filter window based on the actual pin position output signal period. Thereafter, the actual pin position output signal period from the sliding camshaft actuator is monitored by a control module and signals that occur outside of the pin position output signal filter window are rejected accordingly to prevent responding to false triggers.
Abstract:
A pre-charge circuit is disclosed for a vehicle including a battery and a load. The pre-charge circuit includes a time delay circuit configured to, in response to receiving power from the battery, generate a first voltage. The first voltage increases from a first value toward a second value. The pre-charge circuit includes a switch control circuit configured to, in response to the first voltage, provide a second voltage that follows the first voltage. The pre-charge circuit includes a switching circuit configured to selectively connect the battery to the load based on the second voltage and disconnect the load from the battery in response to the second voltage reaching a predetermined threshold value. The pre-charge circuit includes an output circuit configured to restrict an amount of power and inrush current that is provided from the battery to the load through the switching circuit.