Abstract:
A system and method of controlling an automatic speech recognition (ASR) system includes: receiving speech at the ASR system from a vehicle occupant that includes a command to control a vehicle function; identifying a gate command from the speech; associating the identified gate command with the command to control the vehicle function; storing the associated gate command and vehicle command in a database; receiving additional speech at the ASR system from the vehicle occupant; detecting the gate command in the additional speech; and accessing the stored gate command and vehicle command from the database.
Abstract:
A system and method of adjusting digital audio sampling used with wideband audio includes: performing audio sampling on an analog audio signal at an initial sampling rate and an initial bit rate over a wideband audio frequency range; generating a digital audio signal based on the audio sampling; detecting a qualitative error rate between the analog audio signal and the digital audio signal; and decreasing the initial sampling rate, the initial bit rate, or both for sampling subsequent analog audio when the qualitative error is below a threshold.
Abstract:
A method for processing a plurality of audio streams at a computer system onboard a vehicle is provided. The method receives the plurality of audio streams from a plurality of locations within a vehicle; prioritizes each of the plurality of audio streams to obtain a prioritization result; and completes a task associated with each of the plurality of audio streams, according to the prioritization result.
Abstract:
At least first and second microphones with different frequency responses form part of a speech recognition system. The microphones are coupled to a processor that is configured to recognize a spoken word based on the microphone signals. The processor classifies the spoken word, and weights the signals from the microphones based on the classification of the spoken word.
Abstract:
A system and method of processing disfluent speech at an automatic speech recognition (ASR) system includes: receiving speech from a speaker via a microphone; determining the received speech includes disfluent speech; accessing a disfluent speech grammar or acoustic model in response to the determination; and processing the received speech using the disfluent speech grammar.
Abstract:
A hands-free audio system for a vehicle and method of using the system is described. The method includes controlling the directionality of a vehicle microphone. The steps of the method may include: (a) receiving a sensor value from at least one of a vehicle seat position sensor, a vehicle seat orientation sensor, or a vehicle mirror orientation sensor; (b) based on the received sensor value(s) of step (a), determining an origin of a vehicle user's speech; and (c) controlling the microphone sensitivity directionality based on the determined origin.
Abstract:
A vehicle including a passenger compartment having a rear seating area is described. A method for monitoring the rear seating area of the passenger compartment includes monitoring a vehicle operating state comprising one of a key-on state and a key-off state and monitoring the rear seating area. A presence or absence of a passenger in the rear seating area is detected based upon the monitoring, and a control routine is executed based upon the vehicle operating state and the presence or absence of a passenger in the rear seating area.
Abstract:
A system and method of performing automatic speech recognition (ASR) includes: receiving speech at a vehicle microphone; communicating the received speech to an ASR system; measuring an amount of time that elapses while speech is received; selecting a point-of-interest (POI) context or an address context based on the measured amount of received time; and processing the received speech using a POI context-based grammar when a POI context is selected or an address-based grammar when an address context is selected.
Abstract:
A system and method of recognizing speech received at a vehicle includes: receiving speech from a vehicle occupant via a microphone; determining whether the speech relates to a point of interest (POI) or an address without receiving a POI command prompt or an address command prompt in the speech from the vehicle occupant; selecting a POI function or an address function based on the determination; and processing the received speech to identify a POI or an address.
Abstract:
A system and method of verifying a biometric variable of a handheld wireless device user includes: receiving at a wireless device a biometric variable measured using a handheld wireless device; detecting the biometric variable at the wireless device in response to receiving the biometric variable measured using the handheld wireless device; performing feature recognition at the wireless device on the detected biometric variable; comparing the feature recognition performed at the wireless device with the biometric variable measured using the handheld wireless device; permitting access to one or more features available at the wireless device or the handheld wireless device when the comparison is within a predetermined range of values; and denying access to the wireless device or the handheld device when the comparison is outside of the predetermined range of values.