LITHIUM ION ELECTROCHEMICAL DEVICES HAVING EXCESS ELECTROLYTE CAPACITY TO IMPROVE LIFETIME

    公开(公告)号:US20190067729A1

    公开(公告)日:2019-02-28

    申请号:US15689059

    申请日:2017-08-29

    Abstract: The present disclosure provides an electrochemical device that may include a stack having at least one electrochemical cell having a first electrode, a second electrode, a porous separator, and an electrolyte liquid disposed in the porous separator and optionally disposed in the first electrode, the second electrode, or both the first electrode and the second electrode. The stack has a first volume of electrolyte liquid. The electrochemical device also has an integrated storage region that stores a second volume of electrolyte liquid and is in fluid communication with the plurality of electrochemical cells and is configured to transfer the electrolyte liquid into the plurality of electrochemical cells, wherein the second volume of electrolyte liquid is at least about 3% of the first volume. Methods of increasing lifetime of the electrochemical device are also provided.

    Capacitor-assisted electrochemical devices having hybrid structures

    公开(公告)号:US11973226B2

    公开(公告)日:2024-04-30

    申请号:US17084782

    申请日:2020-10-30

    CPC classification number: H01M4/62 H01M50/531 H01M2004/029

    Abstract: A hybrid electrochemical device including at least two electrically connected solid-state electrochemical cells is provided. Each electrochemical cell includes a first outer electrode having a first current collector and a first electroactive layer, a second outer electrode having a second current collector and a second electroactive layer, and one or more intervening electrodes disposed between the electroactive layers. At least one of the intervening electrodes includes one or more capacitor additives. The first outer electrode is electrically connected to at least one of the intervening electrodes in a first electrical configuration. The second outer electrode is electrically connected to at least one of the intervening electrodes in a second electrical configuration. The at least two electrochemical cells are electrically connected in a third electrical configuration. The first and second electrical configurations are the same and the third electrical configuration is distinct from the first and second electrical configurations.

    Solid-state electrolytes and methods for making the same

    公开(公告)号:US11600851B2

    公开(公告)日:2023-03-07

    申请号:US16786469

    申请日:2020-02-10

    Abstract: The present disclosure relates to solid-state electrolytes and methods of making the same. The method includes admixing a sulfate precursor including one or more of Li2SO4 and Li2SO4.H2O with one or more carbonaceous capacitor materials. The first admixture is calcined to form an electrolyte precursor that is admixed with one or more additional components to form the solid-state electrolyte. When a ratio of the sulfate precursor to the one or more carbonaceous capacitor materials in the first admixture is about 1:2, the electrolyte precursor consists essentially of Li2S. When a ratio of the sulfate precursor to the one or more carbonaceous capacitor materials in the first admixture is less than about 1:2, the electrolyte precursor is a composite precursor including a solid-state capacitor cluster including the one or more carbonaceous capacitor materials and a sulfide coating including Li2S disposed on one or more exposed surfaces of the solid-state capacitor cluster.

    Sulfide-impregnated solid-state battery

    公开(公告)号:US11539071B2

    公开(公告)日:2022-12-27

    申请号:US16578880

    申请日:2019-09-23

    Abstract: A sulfide-impregnated solid-state battery is provided. The battery comprises a cell core constructed by basic cell units. Each unit comprises a positive electrode comprising a cathode layer and a positive meshed current collector comprising a conductive material which is further coated by oxide-based solid-state electrolyte. The cell unit further comprises a negative electrode comprising an anode layer and a negative meshed current collector comprising a conductive material which is further coated by oxide-based solid-state electrolyte. The positive and negative electrodes are stacked together to form the cell unit. The two coated oxide-based solid electrolyte layers are disposed between the positive and negative electrode as dual separators. Such a cell unit may be repeated or connected in parallel or bipolar stacking to form the cell core to achieve a desired battery voltage, power and energy. The cell core comprises a sulfide-based solid-state electrolyte dispersed in the pore structures of cell core.

    HYBRID ELECTRODES AND ELECTROCHEMICAL CELLS AND MODULES UTILIZING THE SAME

    公开(公告)号:US20210065993A1

    公开(公告)日:2021-03-04

    申请号:US17050084

    申请日:2018-04-23

    Abstract: Hybrid electrochemical cells and modules include an anode two-sided current collector a coated with host material in anode region(s) and a cathode two-sided current collector coated with active material in cathode region(s), and one or more of the anode current collector and the cathode current collector is coated with capacitor material in one or more distinct, non-overlapping capacitor regions. A hybrid anode and/or cathode can include gaps between capacitor regions and anode regions and cathode regions. The capacitor material applied to an electrode is different from the host or active material thereof. Active material includes lithium metal oxides and lithium metal phosphates such as LiFePO4, Li(NixMnyCoz)O2, and/or LiMn2O4; host material includes graphite, silicon, silicon-Li/Sn/Cu alloys, Si/Co/Fe/TiSn oxides, and low-surface area carbon; and capacitor material includes activated carbon, metal oxides, and metal sulfides.

    SULFIDE-IMPREGNATED SOLID-STATE BATTERY

    公开(公告)号:US20210036360A1

    公开(公告)日:2021-02-04

    申请号:US16578880

    申请日:2019-09-23

    Abstract: A sulfide-impregnated solid-state battery is provided. The battery comprises a cell core constructed by basic cell units. Each unit comprises a positive electrode comprising a cathode layer and a positive meshed current collector comprising a conductive material which is further coated by oxide-based solid-state electrolyte. The cell unit further comprises a negative electrode comprising an anode layer and a negative meshed current collector comprising a conductive material which is further coated by oxide-based solid-state electrolyte. The positive and negative electrodes are stacked together to form the cell unit. The two coated oxide-based solid electrolyte layers are disposed between the positive and negative electrode as dual separators. Such a cell unit may be repeated or connected in parallel or bipolar stacking to form the cell core to achieve a desired battery voltage, power and energy. The cell core comprises a sulfide-based solid-state electrolyte dispersed in the pore structures of cell core.

    LITHIUM-ION BATTERY WITH WIRE-CONTAINING ELECTRODES

    公开(公告)号:US20190288328A1

    公开(公告)日:2019-09-19

    申请号:US16304718

    申请日:2016-06-21

    Abstract: The electrical performance and structural integrity of lithium battery electrodes, formed of particles of active electrode materials, are improved by mixing electrically conductive wires (metal wires, carbon fibers, and/or the like, including chemically-reduced metal oxide particles) with the particles of active electrode material. For example, copper wires may be intimately mixed with anode particles in porous anode layers which are resin-bonded to sides of a copper current collector foil. And aluminum wires may be mixed with cathode particles in porous cathode layers resin bonded to an aluminum current collector. The wires may be used to increase both the conductivity of electrons and lithium ions and the flexibility of the electrode layer when the electrodes are infiltrated with a solution of a lithium salt electrolyte. The workable thickness of each electrode layer can thus be increased and its performance enhanced to produce a lower cost and better forming battery.

Patent Agency Ranking