Abstract:
In one general aspect, a converter circuit includes a magnetic core and a coil assembly. The coil assembly includes a primary winding assembly, a secondary winding assembly, and an auxiliary winding assembly. The primary winding assembly includes a conductive medium arranged in at least one primary winding layer. The secondary winding assembly includes a conductive medium arranged in at least one secondary winding layer. The auxiliary winding assembly includes a conductive medium arranged in at least one auxiliary winding layer. The at least one auxiliary winding layer includes an auxiliary winding layer disposed adjacent to a layer of the at least one primary winding layer and adjacent to a layer of the at least one secondary winding layer.
Abstract:
A power brick includes a power module configured to convert AC to DC, an interface coupled to a computing device and configured to communicate with the computing device, and a controller. The controller is configured to receive a modified power setting and at least one modified error threshold value via the interface, control a modification of a power setting associated with the power module, and control a modification of a protection value of the power brick based on the at least one modified error threshold value.
Abstract:
In some implementations, a programmable power adapter includes a first set of switches, a resonant circuit, a transformer, and a second set of switches. The power adapter includes control circuitry configured to provide control signals that change the voltage conversion ratios of the first set of switches and the second set of switches. The control circuitry can provide control signals causing the first set of switches to operate in one of multiple operating modes that each correspond to a different voltage conversion ratio, and the control circuitry can provide control signals causing the second set of switches to operate in one of multiple operating modes that each correspond to a different voltage conversion ratio.
Abstract:
In one general aspect, a system can include an electromagnetic interference (EMI) filter, an alternating current (AC) rectifier bridge operatively coupled to the electromagnetic filter, the AC rectifier bridge providing a first voltage, a first power stage including a step-down transformer, the first power stage configured to receive the first voltage and output a second voltage, a second power stage configured to receive the second voltage and configured to convert the second voltage to a third voltage, and a power delivery adapter controller configured to receive at least one input indicative of a requested voltage value and configured to provide at least one output for use by the second power stage, the second power stage configured to determine a value for the third voltage based on the at least one output.
Abstract:
According to an aspect, an adaptor may include a converting unit configured to convert a source voltage to an output voltage to be provided to a computing device via a cable. The converting unit includes a transformer having primary windings and secondary windings. The adaptor includes a current sense unit configured to obtain a current sense signal, where the current sense signal indicates an output current produced by the secondary windings of the transformer. The adaptor includes an IR drop detection unit configured to determine a feedback signal representing a voltage drop caused by the cable based on the current sense signal and the output voltage of the converting unit, and a control unit configured to adjust the output voltage of the converting unit to account for the voltage drop represented by the feedback signal.
Abstract:
A server rack with vertically stacked shelves is disclosed. The shelves are used for housing loads (e.g. servers) and power supply units. Thus, both the power supply units and the servers are vertically stacked in the rack. An array of vertical and horizontal busses is secured to the back side of the server rack to electrically couple the servers with the power supply units. The arrangement of the PSUs and the busses provides for uniform current density across the server rack. The devices placed on the shelves are accessible and serviceable from the front of the server rack. The server rack can be placed within or secured to a device, system or a server room in a vertical orientation, a horizontal orientation or at an angle.
Abstract:
A power brick includes a first port configured to provide power to a first computing device, a second port configured to provide power to a second computing device, a first switch coupled to the first port and configured to select one of a first power configuration and a second power configuration based on a load associated with the second port, and a second switch coupled to the second port and configured to select one of the first power configuration and the second power configuration based on the load associated with the second port.
Abstract:
Systems and methods are provided for cooling electronic equipment in a data center. Ambient air is vertically circulated from a workspace across a plurality of rack-mounted electronic devices. The electronic devices are located in a plurality of trays such that each tray has a major plane that is substantially parallel to a side plane of the rack. The circulated air is cooled with a heat exchanger that is connected to a vertical end of the rack via a sealed interface. Multiple racks can be arrayed in a distributed cooling arrangement, which increases reliability and scalability of the data center.