Abstract:
A user conducts a wireless payment transaction with a merchant system by transmitting payment information from a user device to a terminal reader without accessing a secure element resident on the user device. A user taps a user device in a merchant system's terminal reader's radio frequency field. The terminal reader and the user device establish a communication channel and the terminal reader transmits a signal comprising a request for a payment processing response. The signal is received by the user device and converted by a controller to a request understandable by an application host processor. The controller transmits the request to the application host processor, where the request is processed, and a response is transmitted to the controller and then to the terminal reader. The response generated by the application host processor is identifiable by the merchant system as a payment response.
Abstract:
A user conducts a wireless payment transaction with a merchant system by transmitting payment information from a user device to a terminal reader without accessing a secure element resident on the user device. A user taps a user device in a merchant system's terminal reader's radio frequency field. The terminal reader and the user device establish a communication channel and the terminal reader transmits a signal comprising a request for a payment processing response. The signal is received by the user device and converted by a controller to a request understandable by an application host processor. The controller transmits the request to the application host processor, where the request is processed, and a response is transmitted to the controller and then to the terminal reader. The response generated by the application host processor is identifiable by the merchant system as a payment response.
Abstract:
A user conducts a wireless payment transaction with a merchant system by transmitting payment information from a user device to a terminal reader without accessing a secure element resident on the user device. A user taps a user device in a merchant system's terminal reader's radio frequency field. The terminal reader and the user device establish a communication channel and the terminal reader transmits a signal comprising a request for a payment processing response. The signal is received by the user device and converted by a controller to a request understandable by an application host processor. The controller transmits the request to the application host processor, where the request is processed, and a response is transmitted to the controller and then to the terminal reader. The response generated by the application host processor is identifiable by the merchant system as a payment response.
Abstract:
Devices are described herein including mounts configured to removably mount electrodes and other elements of the devices to a garment (e.g., a close-fitting undergarment) of a wearer. The devices include at least two electrodes configured such that the electrodes are maintained in secure electrical contact with skin of the wearer when the device is so mounted. The devices can be mounted to garments at various locations on the torso of the wearer such that an electrocardiographic signal related to the electrical activity of the heart of the wearer can be extracted from voltage fluctuations between the at least two electrodes. Such devices can be used for continuous logging or other applications of the electrocardiographic signals of the wearer. Such logged electrocardiographic signals could be used to determine a medical or health state of the wearer.
Abstract:
Systems and methods for location coordination between multiple devices are provided. In one example, a method includes receiving by a wearable device, a location signal from a positioning device having location-determining capabilities indicative of the location of the positioning device and calculating a first location of the wearable device based, at least in part, on the location of the positioning device and the strength of the location signal received by the wearable device. The wearable device may include at least one sensor configured to measure at least one physiological parameter.
Abstract:
Methods and apparatus for providing rule-based access to data stored on wearable devices are provided. A wearable computing device can store data that includes data about a wearer of the wearable computing device. The wearable computing device can receive a request for a portion of the stored data. The wearable computing device can determine a designated role associated with the request for the portion of the stored data. The wearable computing device can determine one or more rules regarding access to the portion of the stored data based on the designated role. The wearable computing device can determine a response to the request for the portion of the stored data by at least: determining whether the request is validated by at least applying the one or more rules to the request, and after determining that the request is validated, providing the requested portion of the stored data.
Abstract:
A re-programmable wireless device can store data securely and use near field communication (NFC) to exchange functionality data and/or program code from a central server system through a mobile device. A user requests a new re-programmable wireless device or a new re-programmable wireless device function via an application on the mobile device. The central server system transmits program code and a public key used to identify the re-programmable wireless device to the mobile device, which functions as a pass-through conduit for the information, storing it until the devices are synced. A NFC communication channel is created, and the mobile device authenticates the re-programmable wireless device by cross-referencing the public key received from the central server system with the public key transmitted by the re-programmable wireless device once the communication channel is established. Upon authentication, the re-programmable wireless device is synced with the mobile device, and the mobile device passes the program code to the re-programmable wireless device.
Abstract:
A re-programmable wireless cryptographic device can store data securely and use near field communication (NFC) to exchange functionality data and/or program code from a central server system through a mobile device. A user requests a new cryptographic device or a new device function via an application on the mobile device. The central server system transmits program code and a public key used to identify the cryptographic device to the mobile device, which functions as a pass-through conduit for the information, storing it until the devices are synced. A NFC communication channel is created, and the mobile device authenticates the cryptographic device by cross-referencing the public key received from the central server system with the public key transmitted by the cryptographic device once the communication channel is established. Upon authentication, the cryptographic device is synced with the mobile device, and the mobile device passes the program code to the cryptographic device.
Abstract:
Transferring control of a secure element between TSMs comprises a zone master key established between the TSMs that facilitates encryption of a temporary key. The TSMs create the zone master key prior to initiation of transfer of control. Once transfer of control is initiated, the first TSM establishes a communication channel and deletes its key from the secure element. The first TSM creates a temporary key that is encrypted with the zone master key established between the first TSM and the second TSM. The encrypted temporary key is communicated to the second TSM with a device identifier. The second TSM decrypts the temporary key using the zone master key and identifies the user device using the device identifier. The new TSM establishes a communication channel and deletes the temporary key from the secure element. The new TSM then inputs and saves its key into the secure element.
Abstract:
A re-programmable wireless cryptographic device can store data securely and use near field communication (NFC) to exchange functionality data and/or program code from a central server system through a mobile device. A user requests a new cryptographic device or a new device function via an application on the mobile device. The central server system transmits program code and a public key used to identify the cryptographic device to the mobile device, which functions as a pass-through conduit for the information, storing it until the devices are synced. A NFC communication channel is created, and the mobile device authenticates the cryptographic device by cross-referencing the public key received from the central server system with the public key transmitted by the cryptographic device once the communication channel is established. Upon authentication, the cryptographic device is synced with the mobile device, and the mobile device passes the program code to the cryptographic device.