Abstract:
Provided is an energy storage device which employs the use of a separator provided with a layer having poor thermal properties such as a heat resistant coated layer and is capable of inhibiting a decrease in performance. The energy storage device includes: a wound body including a positive electrode, a negative electrode, and separators which are layered and wound, the separators being interposed between the positive electrode and the negative electrode and having a first surface and a second surface, the first surface having thermal bonding properties superior to thermal bonding properties of the second surface; and an insulation sheet wound around an outermost layer of the wound body. At least one of the separators is bonded to the insulation sheet via the first surface thereof.
Abstract:
An energy storage device includes a positive electrode, a negative electrode, and a nonaqueous electrolyte solution. The negative electrode includes an active material layer, and the active material layer has pores having a pore size of 0.1 μm or more and 1.0 μm or less, and a total volume of the pores is 0.26 cm3/g or more and 0.46 cm3/g or less.
Abstract:
Provided is an electric storage device including a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, a nonaqueous electrolyte solution in which an electrolyte is dissolved in a nonaqueous solvent, wherein an inorganic filler layer is disposed between the positive electrode and the negative electrode and the nonaqueous electrolyte solution contains lithium difluorobis(oxalato)phosphate.
Abstract:
An energy storage device including a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, wherein the negative electrode includes a negative electrode active material layer containing a non-graphitizable carbon as a negative electrode active material, and the negative electrode active material has a negative electrode active material weight per unit volume of the negative electrode active material layer of 0.92 g/cc or more and 1.13 g/cc or less and a particle size D90 of 4.3 μm or more and 11.5 μm or less, the particle size D90 being a particle size in particle size distribution in which a cumulative volume is 90%.
Abstract:
Provided is an energy storage device including an electrolyte solution including a compound represented by the general formula (1), a compound represented by the general formula (2), and a compound represented by the general formula (3):
Abstract:
An energy storage device comprising: a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, a nonaqueous electrolyte, and an insulating layer disposed between the positive electrode and the separator, wherein the positive electrode contains a compound represented by LiaNibCocMdWxNbyZrzO2 (provided that a, b, c, d, x, y and z satisfy the equations of 0≦a≦1.2, 0≦b≦1, 0.1≦c≦0.4, 0≦d≦0.5, 0≦x≦0.1, 0≦y≦0.1, 0≦z≦0.1 and b+c+d=1, and M denotes at least one kind of element selected from the group consisting of Mn, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, Sn and Mg) as a positive active material and the negative electrode contains hardly graphitizable carbon with a D50 particle diameter greater than or equal to 1.0 μm and less than or equal to 6.0 μm as a negative active material.
Abstract:
An energy storage device comprises a positive electrode, a negative electrode, a separator arranged between the positive electrode and the negative electrode, and a nonaqueous electrolyte. The negative electrode has a negative substrate layer, and a negative composite layer arranged on the surface of the negative substrate layer. The separator has a separator substrate layer. The negative composite layer contains a non-graphitizable carbon having a particle diameter D50 of 2.0 μm or more and 6.0 μm or less. A corrected negative electrode density, which is defined as a value obtained by dividing, by a thickness of the separator substrate layer, a value obtained by multiplying a density of the negative composite layer by a thickness of the negative composite layer, is 1.2 (g/cm3) or more and 5.1 (g/cm3) or less.
Abstract:
The present embodiment provides a lithium ion secondary battery including a positive electrode containing LiaNixCoyMzO2 (0.9≤a≤1.2, 0.3≤x≤0.8, 0.2≤y+z≤0.7, where M is a metal element other than Li, Ni, and Co) as a positive active material, and a negative electrode containing non-graphitic carbon as a negative active material. In this lithium ion secondary battery, at a portion where the positive electrode and the negative electrode face each other, a basis weight (P) of the positive active material and a basis weight (N) of the negative active material satisfy a relational expression of 0.65≤P/N≤1.05.
Abstract:
An energy storage device includes a positive electrode, a negative electrode, and an insulating layer arranged between these electrodes to electrically insulate these electrodes. The negative electrode includes a composite layer containing active material particles. The composite layer of the negative electrode, and the positive electrode are arranged to face each other across the insulating layer. The insulating layer contains electrically insulating particles, and is made porous by a gap between these particles. The composite layer of the negative electrode is made porous by a gap between the active material particles, and “−0.8≦Log B−Log A≦1.0” is satisfied in which in a pore distribution of the composite layer, a pore peak diameter is represented by A (μm), and in a pore distribution of the insulating layer, a peak diameter is represented by B (μm).
Abstract:
A method including: a placing step of placing an electrode assembly including a positive electrode that contains a positive active material and a negative electrode that contains a negative active material, and an electrolyte solution containing an additive in a container; a charging step of charging the electrode assembly placed in the container; and a hermetically sealing step of hermetically sealing the container after the charging step. When starting charging in the charging step, the electrolyte solution contains 1.0 mass % or less of lithium difluoro bis(oxalate)phosphate as the additive. The charge voltage in the charging step is 4.0 V or more.