Abstract:
A MOS transistor includes a substrate, source/drain regions formed at portions of the substrate, and a channel region formed between the source/drain regions. The MOS transistor further includes a gate structure having a gate insulation layer pattern and a gate electrode formed on the channel region. The gate electrode includes a first gate conductive layer pattern and a second gate conductive layer pattern. The first gate conductive layer pattern has a nitrogen concentration gradient gradually increasing from a lower portion of the first gate conductive layer pattern to an upper portion of the first gate conductive layer pattern. The second gate conductive layer pattern includes a material having a resistance substantially lower than a resistance of the first gate conductive layer pattern.
Abstract:
A semiconductor device includes a substrate, a plurality of gate structures, a first insulating interlayer pattern, and a second insulation layer pattern. The substrate has an active region and a field region, each of the active region and the field region extends in a first direction, and the active region and the field region are alternately and repeatedly arranged in a second direction substantially perpendicular to the first direction. The gate structures are spaced apart from each other in the first direction, each of the gate structures extends in the second direction. The first insulation layer pattern is formed on a portion of a sidewall of each gate structure. The second insulation layer pattern covers the gate structures and the first insulation layer pattern, and has an air tunnel between the gate structures, the air tunnel extending in the second direction.
Abstract:
A method of manufacturing a semiconductor device in a process camber is disclosed. The method includes forming a preliminary dielectric layer including oxynitride on a substrate by performing a plasma oxidation treatment and a first plasma nitridation treatment, wherein the preliminary dielectric layer has a substantially uniform nitrogen concentration profile to a defined depth, and forming a dielectric layer from the preliminary dielectric layer by performing a second plasma nitridation treatment, wherein the nitrogen concentration of the dielectric layer is higher than that of the preliminary dielectric layer.