Abstract:
A machine-vision system that provides changing and/or automatic adjustment of illumination angle, dispersion, intensity, and/or color of illumination. One such system includes a light source emitting polarized light, a machine-vision imager, an image processor operative to generate a quality parameter based on the image, and one or more of the means described above for selectively directing the light in a predetermined pattern based on its polarization and on the quality parameter of the image. Some embodiments include an imager, a controllable light source, first and second optical elements, that selectively direct light in first and second patterns, and a controller controlling the light characteristics using the first and second light patterns. One method includes setting one or more illumination parameters, illuminating the object based on the illumination parameters, obtaining an image, generating a quality parameter based on a region of interest, and iterating using different illumination parameters.
Abstract:
An illumination source includes a plurality of LEDs, and an electrical circuit that selectively applies power from the DC voltage source to the LED units, wherein the illumination source is suitable for handheld portable operation. In some embodiments, the electrical circuit further includes a control circuit for driving the LEDs with electrical pulses at a frequency high enough that light produced has an appearance to a human user of being continuous rather than pulsed, the control circuit changing a pulse characteristic to adjust a proportion of light output having the first characteristic color spectrum output to that having the second characteristic color spectrum output. Some embodiments provide an illumination source including a housing including one or more LEDs; and a control circuit that selectively applies power from a source of electric power to the LEDs, thus controlling a light output color spectrum of the LEDs.
Abstract:
Improved method and apparatus for hand-held portable LED illumination. The illumination source includes a plurality of LEDs, and an electrical circuit that selectively applies power from the DC voltage source to the LED units, wherein the illumination source is suitable for handheld portable operation. In some embodiments, the electrical circuit further includes a control circuit for changing a proportion of light output having the first characteristic color spectrum output to that having the second characteristic color spectrum output, and that drives the LEDs with electrical pulses at a frequency high enough that light produced has an appearance to a human user of being continuous rather than pulsed. Still another aspect provides an illumination source including a housing including one or more LEDs; and a control circuit that selectively applies power from a source of electric power to the LEDs, thus controlling a light output color spectrum of the LEDs.
Abstract:
In a machine-vision system for inspecting a part, a method and apparatus to provide high-speed changing and/or automatic adjustment of illumination angle, dispersion, intensity, and/or color of illumination. One such system includes a light source emitting polarized light, a machine-vision imager that obtains an image, a processor coupled to receive the image, and operative to generate a quality parameter based on the image, and one or more of the various means as described above for selectively directing the light in a predetermined pattern based on its polarization and based on the quality parameter of the image. Another machine-vision system includes a machine-vision imager located along an optical axis, a controllable light source, a first optical element that selectively directs light in a first predetermined pattern relative to the optical axis based on light characteristics, a second optical element, that directs light in a second predetermined pattern relative to the optical axis, and an electronic controller operatively coupled to the imager and the controllable light source to control the light characteristics and thereby selecting one or more of the first and second predetermined patterns. A machine-vision method includes (a) setting one or more illumination parameters, (b) illuminating the object based on the one or more illumination parameters, (c) obtaining an image of the illuminated object, (d) generating a quality parameter based on an image quality of a predetermined region of interest in the image, and (e) iterating (b), (c), and (d) using a different illumination parameter.