Abstract:
A device for optical detection of analytes in a sample includes at least two optoelectronic components. The optoelectronic components include at least one optical detector configured to receive a photon and at least one optical emitter configured to emit a photon. The at least one optical emitter includes at least three optical emitters disposed in a flat, non-linear arrangement, and the at least one optical detector includes at least three optical detectors disposed in a flat, non-linear arrangement. The at least three optical emitters and the at least three optical detectors include at least three different wavelength characteristics.
Abstract:
A light detection apparatus and an image reconstruction method using the light detection apparatus are provided. The light detection apparatus includes a detection module and a control module. The detection module has a plurality of light detection units to constitute a hexagonal or honeycomb array structure. Each of the light detection units has a light-emitting element and a photosensitive element. The control module has a selector and a multiplexer. The selector selects at least one light-emitting element to produce a light source, so as to emit a plurality of photons to an object-under-test. The multiplexer selects at least one photosensitive element to detect light signals of the photons diffused to the object-under-test. The invention can obtain more light signals from the object-under-test to reconstruct images of the object-under-test.
Abstract:
An imaging system for generating images of biological samples having a surface, the system comprising: a sample support for supporting a biological sample in use; a plurality of illumination sources, the plurality of illumination sources being arranged around the sample support and each adapted to illuminate the biological sample, in use, from a different direction; an image capture device for capturing illumination which has impinged on the biological sample to thereby form an image of the sample; wherein at least one of the illumination sources direction is not perpendicular to the surface of the sample.
Abstract:
An apparatus and method are disclosed for examining optically a sample carried in a plurality of wells. A holder is adapted to receive and hold in place a sample carrier. A plurality of excitation means selectively introduce excitation towards a spatially limited portion of a sample carrier held in place by said holder. Detecting means receive and detect emission radiation coupled out from a light output window of a sample carrier held in place by said holder. Said detecting means is common to said excitation means and is configured to receive emission radiation from a plurality of different spatially limited portions of a sample carrier held in place by said holder.
Abstract:
The present invention relates to a method for easily manufacturing an illumination device in which a surface mount chip-type LED is used, and a wiring board is formed into a truncated conical or another shape. The method includes, in a flexible strip-like wiring board having a partial ring or a linear shape, providing a through-hole T for filling with solder paste S at a wiring end portion L to be connected with a terminal of an LED, temporarily fixing the LED with bond B onto the wiring board held in a plate-like state, filling the through-hole T with the solder paste S from a back surface of the wiring board, rounding the wiring board mounted with the LED into a truncated conical or cylindrical shape, and reflowing the wiring board in the rounded state to solder the LED.
Abstract:
An illumination device has a board, a plurality of light emitting elements that are mounted on the board, the plurality of light emitting elements being disposed such that a light irradiation direction of each light emitting element becomes substantially perpendicular to the board, and a plurality of lenses. Each of the plurality of lens is paired with one of the plurality of light emitting elements. A relative positional relationship between the light emitting element and the lens in each pair varies according to a position on the board in which the corresponding light emitting element is disposed.
Abstract:
A system and method are provided for detecting extraneous material, often referred to as scarf, in the interior of a tubular steel product. The system is arranged to illuminate one end of the tube as it passes through the field of view of an imaging system, preferably a Smart Camera. The camera obtains images and processes the images to determine if scarf is present in the interior of the tube. Preferably a processor determines the percentage of dark pixels in the interior of the tube as detected in the image and if a predetermined threshold is met or exceeded, the tube fails. A blob sensor is also preferably used to avoid false positives where the dark pixels do not have a certain amount of connectivity.
Abstract:
A machine-vision system that provides changing and/or automatic adjustment of illumination angle, dispersion, intensity, and/or color of illumination. One such system includes a light source emitting polarized light, a machine-vision imager, an image processor operative to generate a quality parameter based on the image, and one or more of the means described above for selectively directing the light in a predetermined pattern based on its polarization and on the quality parameter of the image. Some embodiments include an imager, a controllable light source, first and second optical elements, that selectively direct light in first and second patterns, and a controller controlling the light characteristics using the first and second light patterns. One method includes setting one or more illumination parameters, illuminating the object based on the illumination parameters, obtaining an image, generating a quality parameter based on a region of interest, and iterating using different illumination parameters.
Abstract:
A portable, scanning and analyzing apparatus that uses an integrated scan probe for the scanning operation is described. The integrated scanning probe is formed with a light emitting diode array light source and a photodiode detector array. After a test sample finishes the reaction in test strip paper, a scanner device scans the test paper to collect the optical signals at variable, consecutive intervals along the scanning path to obtain the test signal accordingly. Then, the scanner device outputs the test signal for amplification. The amplified test signals are sent to an analog/digital converter such that the amplified test signals are converted into digital signals, which are then output to a computing unit for analyzing for subjective analytical results. The computing unit couples with the controller device, wherein the controller device controls a driver device that drives the scanner device to perform the scanning operation on the test paper.
Abstract:
A method and apparatus for genomic or proteomic research to visualize fluorescent labeled DNA, RNA or protein samples that have been separated for documentation and analysis. The apparatus includes a novel radiation source for uniformly irradiating the samples which comprises a grid constructed from a continuous, serpentine shaped ultraviolet light producing tube that is strategically formed to provide a multiplicity of side-by-side, immediately adjacent irradiating segments. In one form of the invention the apparatus also includes a first conversion plate that is carried by the housing at a location intermediate the radiation source and the sample supporting platform for converting the radiation emitted from the source to radiation at a second wavelength.