Abstract:
A system includes a reciprocating engine having a piston disposed in a cylinder, an intake valve, an exhaust valve, and an exhaust flow path downstream of the exhaust valve. The system also includes a first sensor configured to obtain a first feedback indicative of an exhaust gas parameter in the exhaust flow path. The system also includes a controller configured to identify a valve wear condition of at least one of the intake valve or the exhaust valve at least partially based on the first feedback from the first sensor.
Abstract:
A control system includes a first and second sensor configured to monitor a first type of operating condition of a first and second cylinder of an engine, respectively, a feedback component configured to monitor a second type of operating condition of the engine, and a controller communicatively coupled with the first and second sensors and feedback component. The controller is configured to receive a first measurement of the first type of operating condition from the first sensor, a second measurement of the first type of operating condition from the second sensor, and a third measurement of the second type of operating condition from the feedback component, to analyze the first and second measurements to detect a change in operating peak firing pressure in the first cylinder and/or in the second cylinder, and to analyze the third measurement to diagnose a cause of the change.
Abstract:
The present disclosure includes systems and methods for monitoring a prechamber of an engine. In one embodiment, a system includes a combustion engine having a combustion chamber and a prechamber, where the prechamber is configured to direct a flame toward the combustion chamber, a fuel supply valve configured to adjust a flow of a fuel toward the prechamber, a prechamber valve configured to receive the fuel into the prechamber, a knock sensor coupled to the combustion engine, and a controller. The controller is configured to control operations of the combustion engine, to receive a signal from the knock sensor, to determine a combustion parameter based at least on the signal, to determine a condition of one or both of the prechamber and the prechamber valve based at least on the combustion parameter, and to adjust the fuel supply valve based at least on the condition.
Abstract:
A thermoelectric generator system for use between gases from a compressor stage of a turbocharger and a heat transfer fluid of an intercooler that treats the gases. In one version, the system may include a first terminal in thermal contact with gases from the compressor stage of the turbocharger to be treated by the intercooler; a second terminal in thermal contact with a heat transfer fluid for use in the intercooler; and a thermoelectric material between the first terminal and the second terminal, the thermoelectric generator converting a temperature difference between the gases and the heat transfer fluid to an electric current. A controller may be provided for controlling a current flow transmitted from the thermoelectric material to a load. A related intercooler system and engine system are also provided.
Abstract:
A system includes a reciprocating engine having a piston disposed in a cylinder, an intake valve, an exhaust valve, and an exhaust flow path downstream of the exhaust valve. The system also includes a first sensor configured to obtain a first feedback indicative of an exhaust gas parameter in the exhaust flow path. The system also includes a controller configured to identify a valve wear condition of at least one of the intake valve or the exhaust valve at least partially based on the first feedback from the first sensor.
Abstract:
The present disclosure includes systems and methods for monitoring a prechamber of an engine. In one embodiment, a system includes a combustion engine having a combustion chamber and a prechamber, where the prechamber is configured to direct a flame toward the combustion chamber, a fuel supply valve configured to adjust a flow of a fuel toward the prechamber, a prechamber valve configured to receive the fuel into the prechamber, a knock sensor coupled to the combustion engine, and a controller. The controller is configured to control operations of the combustion engine, to receive a signal from the knock sensor, to determine a combustion parameter based at least on the signal, to determine a condition of one or both of the prechamber and the prechamber valve based at least on the combustion parameter, and to adjust the fuel supply valve based at least on the condition.
Abstract:
A system includes a turbocharger, a wastegate, and one or more thermoelectric generators. The turbocharger includes a turbine and a compressor, and is configured to be coupled to an internal combustion engine. The wastegate is coupled to the turbine, and is disposed within a wastegate enclosure. The one or more thermoelectric generators generate energy from engine exhaust flowing through the wastegate. Each of the thermoelectric generators comprising includes a hot side coupled to the wastegate enclosure, a cold side coupled to a coolant supply, and one or more thermoelectric materials disposed between the hot side and the cold side.
Abstract:
A system includes a cylinder, a piston, a sensor configured to detect vibrations of the cylinder, piston, or both that correspond with varying pressures within the cylinder, and a controller coupled to the sensor. The controller is configured to receive a first signal from the sensor corresponding with first vibrations of the cylinder and to deduce from the first signal a first operating value of a parameter indicative of peak firing pressure at a first time, to compare the first operating value with a baseline value of the parameter indicative of peak firing pressure to detect a change in peak firing pressure, to receive a second signal from the sensor corresponding with second vibrations of the cylinder and to deduce from the second signal a second operating value of the parameter indicative of peak firing pressure at a second time, and to compare the second operating value with the baseline value to confirm the change in peak firing pressure.