Abstract:
A multi-farm wind power dispatch management system is provided which includes wind turbine dispatch controllers for controlling wind power dispatch of respective wind farm components and wind farm dispatch management systems for receiving respective wind farm component operating parameters and generating respective farm-level operating parameters. The system also includes group dispatch management systems for receiving the farm-level operating parameters and generating respective group level operating parameters. The system also includes a master dispatch management system for receiving the group-level operating parameters; computing a real time output power generated by the wind farm components; determining a difference between the real time output power and a committed output power; and generating reference commands, based on the difference, for controlling at least one of, the wind farm component operating parameters, the farm-level operating parameters, the group level operating parameters, or combinations thereof to reduce the difference and dispatch the committed output power.
Abstract:
A method for controlling a wind farm including a plurality of wind turbines is provided. The method includes computing an error between a farm-level base point power and a measured wind farm power, generating an aggregated farm-level active power set point for the wind farm based on the error and a frequency response set point, generating aggregated turbine-level active power set points based on the aggregated farm-level active power set point, transmitting the aggregated turbine-level active power set points, determining aero power set points and storage power set points for the respective wind turbines and energy storage elements of the respective wind turbines from the aggregated turbine-level active power set points, and controlling the plurality of wind turbines for delivering aero power based on the respective aero power set points and controlling the energy storage elements to provide storage power based on the respective storage power set points.
Abstract:
A method for controlling a power output of a power generating unit includes receiving at least two measurement data sets from a location of integration of a power generating unit to an electrical grid. Each measurement data set includes a plurality of electrical parameters. The method further includes generating a grid model of the electrical grid based on the at least two measurement data sets. The grid model is characterized by an equivalent grid voltage and an equivalent grid impedance. The method further includes computing a strength value of the electrical grid based on the grid model, using the at least two measurement data sets. The method also includes controlling the power output of a power generating unit based on the strength value of the electrical grid.
Abstract:
A wind power generation system includes one or both of a memory or storage device storing one or more processor-executable executable routines, and one or more processors configured to execute the one or more executable routines which, when executed, cause acts to be performed. The acts include receiving weather data, wind turbine system data, or a combination thereof; transforming the weather data, the wind turbine system data, or the combination thereof, into a data subset, wherein the data subset comprises a first time period data; selecting one or more wind power system models from a plurality of models; transforming the one or more wind power system models into one or more trained models at least partially based on the data subset; and executing the one or more trained models to derive a forecast, wherein the forecast comprises a predicted electrical power production for the wind power system.
Abstract:
A system for automatic generation control in a wind farm is provided. The system includes a wind farm controller for controlling the plurality of energy storage elements. The wind farm controller receives an automatic generation control set point from an independent system operator, generates a farm-level storage power set point for the wind farm based on the automatic generation control set point, generates individual storage power set points for the plurality of energy storage elements based on states of charge of the respective energy storage elements, and controls the plurality of energy storage elements based on the individual storage power set points for dispatching storage power to perform automatic generation control.