Abstract:
An imager including sub-imager pixel arrays having a plurality of four-side buttable imagers distributed on a substrate and an on-chip digitizing readout circuit. Pixel groupings formed from among the plurality of four-side buttable imagers. The readout electronics including a buffer amplifier for each of the pixel groupings and connected to respective outputs of each four-side buttable imager of the pixel grouping. A plurality of shared analog front ends, each shared analog front end connected to respective multiple buffer amplifiers from among the plurality of pixel groupings. An analog-to-digital converter located at a common centroid location relative to the plurality of shared analog front ends, the analog-to-digital converter having a fully addressable input selection to individually select an output from each of the plurality of shared analog front ends. An output of the analog-to-digital converter connected to a trace on a back surface of the wafer substrate by a through-substrate-via.
Abstract:
Embodiments of a solid state photomultiplier are provided herein. In some embodiments, a photosensor may include a sensing element; and readout electronics, wherein the sensing element is AC coupled to the readout electronics. In some embodiments, a solid state photomultipler may include a microcell having; a sensing element; and readout electronics, wherein the sensing element is AC coupled to the readout electronics.
Abstract:
In certain embodiments, a mixed signal integrated circuit is provided that includes both a digital portion and an analog portion. A shield is provided that overlays one of the digital portion or the analog portion of the mixed signal integrated circuit. The shield limits propagation of signals between the digital portion and the analog portion of the mixed signal integrated circuit.
Abstract:
Embodiments of a solid state photomultiplier are provided herein. In some embodiments, a solid state photomultiplier may include an epitaxial layer, a high voltage region formed in the epitaxial layer, a low voltage region formed in the epitaxial layer, and an intermediate region disposed between the high voltage region and low voltage region, wherein the high voltage region is electrically coupled to the low voltage region via the intermediate region, and wherein at least a portion of the epitaxial layer is disposed between the high voltage region and intermediate region and between the low voltage region and the intermediate region.
Abstract:
Embodiments of a solid state photomultiplier are provided herein. In some embodiments, a photosensor may include a sensing element; and readout electronics, wherein the sensing element is AC coupled to the readout electronics. In some embodiments, a solid state photomultipler may include a microcell having; a sensing element; and readout electronics, wherein the sensing element is AC coupled to the readout electronics.
Abstract:
An imager including sub-imager pixel arrays having a plurality of four-side buttable imagers distributed on a substrate and an on-chip digitizing readout circuit. Pixel groupings formed from among the plurality of four-side buttable imagers. The readout electronics including a buffer amplifier for each of the pixel groupings and connected to respective outputs of each four-side buttable imager of the pixel grouping. A plurality of shared analog front ends, each shared analog front end connected to respective multiple buffer amplifiers from among the plurality of pixel groupings. An analog-to-digital converter located at a common centroid location relative to the plurality of shared analog front ends, the analog-to-digital converter having a fully addressable input selection to individually select an output from each of the plurality of shared analog front ends. An output of the analog-to-digital converter connected to a trace on a back surface of the wafer substrate by a through-substrate-via.
Abstract:
An embedded imaging system in one embodiment includes an encoding module, an imaging module, and a cable. The encoding module is disposed proximate to a proximal end of the system, and is configured to encode frame synchronizing information into timing information comprising a reference clock. The imaging module is disposed proximate the distal end, and includes an image capture device configured to obtain imaging information and a decoding module. The decoding control module is configured to obtain the timing information, to decode the timing information to obtain recovered frame synchronizing information, and to control the image capture device using the recovered frame synchronizing information. The cable is interposed between the proximal end and the distal end, and is configured for passage therethrough of the timing information and the imaging information.
Abstract:
In certain embodiments, a mixed signal integrated circuit is provided that includes both a digital portion and an analog portion. A shield is provided that overlays one of the digital portion or the analog portion of the mixed signal integrated circuit. The shield limits propagation of signals between the digital portion and the analog portion of the mixed signal integrated circuit.
Abstract:
An apparatus for reducing photodiode thermal gain coefficient includes a bulk semiconductor material having a light-illumination side. The bulk semiconductor material includes a minority charge carrier diffusion length property configured to substantially match a predetermined hole diffusion length value and a thickness configured to substantially match a predetermined photodiode layer thickness. The apparatus also includes a dead layer coupled to the light-illumination side of the bulk semiconductor material, the dead layer having a thickness configured to substantially match a predetermined thickness value and wherein an absolute value of a thermal coefficient of gain due to the minority carrier diffusion length property of the bulk semiconductor material is configured to substantially match an absolute value of a thermal coefficient of gain due to the thickness of the dead layer.
Abstract:
Improved imaging systems are disclosed. More particularly, the present disclosure provides for an improved image sensor assembly for an imaging system, the image sensor assembly having an integrated photodetector array and its associated data acquisition electronics fabricated on the same substrate. By integrating the electronics on the same substrate as the photodetector array, this thereby reduces fabrications costs, and reduces interconnect complexity. Since both the photodiode contacts and the associated electronics are on the same substrate/plane, this thereby substantially eliminates certain expensive/time-consuming processing techniques. Moreover, the co-location of the electronics next to or proximal to the photodetector array provides for a much finer resolution detector assembly since the interconnect bottleneck between the electronics and the photodetector array is substantially eliminated/reduced. The co-location of the electronics next to or proximal to the photodetector array also enables/facilitates programmable pixel configuration for optimal image quality.