Abstract:
A system includes a controller including a memory storing instructions and a processor that executes the instructions. The instructions cause the controller to receive a first input signal of a first temperature at an inlet of a gas turbine of a gas turbine and heat recovery steam generator (HRSG) system and a second input signal of a rotational speed of the gas turbine. The instructions also cause the controller to calculate the exhaust flow rate of the gas turbine and HRSG system based on the first input signal and the second input signal. Further, the instructions cause the controller to control the gas turbine and HRSG system to isolate a fuel source at a portion of normal operating speed of the gas turbine sufficient to achieve a predetermined purging volume during coast down of air flow through the gas turbine and HRSG system based on the exhaust flow rate.
Abstract:
A system includes a controller of a power generation system including a memory storing instructions and a processor that executes the instructions. The instructions cause the controller to control the power generation system to provide inlet bleed heat flow to a gas turbine during deceleration of the gas turbine. The instructions also cause the controller to receive a first temperature, a rotational speed of the gas turbine, and an inlet bleed heat flow rate. Additionally, the instructions cause the controller to calculate an exhaust flow rate based on at least the first temperature, the rotational speed, and the inlet bleed heat flow rate. Further, the instructions cause the controller to control the power generation system to isolate a fuel source from the gas turbine at a portion of normal operating speed of the gas turbine sufficient to achieve a purging volume during coast down of the gas turbine.
Abstract:
A system includes a controller including a memory storing instructions and a processor that executes the instructions. The instructions cause the controller to control a steam turbine system coupled to a power generation system to release steam during deceleration of a gas turbine. The instructions cause the controller to receive a first temperature of the gas turbine and a rotational speed of the gas turbine. The instructions cause the controller to calculate an exhaust flow rate of the power generation system based on at least the first input signal and the second input signal. The instructions cause the controller to control the power generation system to isolate a fuel source from the gas turbine at a portion of normal operating speed of the gas turbine sufficient to achieve a predetermined purging volume during coast down of air flow through the power generation system based on the exhaust flow rate.
Abstract:
A system includes a controller including a memory storing instructions and a processor that executes the instructions. The instructions cause the controller to control a steam turbine system coupled to a power generation system to release steam during deceleration of a gas turbine. The instructions cause the controller to receive a first temperature of the gas turbine and a rotational speed of the gas turbine. The instructions cause the controller to calculate an exhaust flow rate of the power generation system based on at least the first input signal and the second input signal. The instructions cause the controller to control the power generation system to isolate a fuel source from the gas turbine at a portion of normal operating speed of the gas turbine sufficient to achieve a predetermined purging volume during coast down of air flow through the power generation system based on the exhaust flow rate.
Abstract:
A method of controlling purge flow in a gas turbomachine system includes detecting a fault condition in the gas turbomachine system, initiating a shutdown of the gas turbomachine system, introducing a purge flow into a gas turbine portion of the gas turbomachine system, categorizing the fault condition as one of a category one fault and a category two fault, and validating the purge flow if the fault condition is a category one fault and invalidating the purge flow if the fault condition is a category two fault.
Abstract:
A system includes a controller of a power generation system including a memory storing instructions and a processor that executes the instructions. The instructions cause the controller to control the power generation system to provide inlet bleed heat flow to a gas turbine during deceleration of the gas turbine. The instructions also cause the controller to receive a first temperature, a rotational speed of the gas turbine, and an inlet bleed heat flow rate. Additionally, the instructions cause the controller to calculate an exhaust flow rate based on at least the first temperature, the rotational speed, and the inlet bleed heat flow rate. Further, the instructions cause the controller to control the power generation system to isolate a fuel source from the gas turbine at a portion of normal operating speed of the gas turbine sufficient to achieve a purging volume during coast down of the gas turbine.
Abstract:
A system includes a controller including a memory storing instructions and a processor that executes the instructions. The instructions cause the controller to receive a first input signal of a first temperature at an inlet of a gas turbine of a gas turbine and heat recovery steam generator (HRSG) system and a second input signal of a rotational speed of the gas turbine. The instructions also cause the controller to calculate the exhaust flow rate of the gas turbine and HRSG system based on the first input signal and the second input signal. Further, the instructions cause the controller to control the gas turbine and HRSG system to isolate a fuel source at a portion of normal operating speed of the gas turbine sufficient to achieve a predetermined purging volume during coast down of air flow through the gas turbine and HRSG system based on the exhaust flow rate.
Abstract:
A system includes a controller including a memory storing instructions to perform operations of a power generation system and a processor that executes the instructions. The instructions cause the controller to control purging fluid flow to an inlet of a gas turbine, an exhaust of the gas turbine, or a combustion section of the gas turbine. The instructions cause the controller to receive a first temperature at the inlet, a rotational speed of the gas turbine, and a purging fluid flow rate. The instructions cause the controller to calculate an exhaust flow rate of the system based on at least the first temperature, the rotational speed, and the purging fluid flow rate. The instructions cause the controller to control the system to isolate a fuel source from the gas turbine at a portion of normal operating speed sufficient to achieve a purging volume during coast down.
Abstract:
Systems, methods, and tangible non-transitory machine readable medium are provided. A system includes a gas turbine system configured to produce power by combusting a fuel. The system further includes a controller configured to control the gas turbine system via an operating 2-dimensional surface area and a setpoint, wherein the operating 2-dimensional surface area comprises a plurality of limits defining bounds for the operating 2-dimensional surface area, and wherein the setpoint is configured to be disposed inside the operating 2-dimentionsal surface area or on the limits.
Abstract:
A system includes a controller including a memory storing instructions to perform operations of a power generation system and a processor that executes the instructions. The instructions cause the controller to control purging fluid flow to an inlet of a gas turbine, an exhaust of the gas turbine, or a combustion section of the gas turbine. The instructions cause the controller to receive a first temperature at the inlet, a rotational speed of the gas turbine, and a purging fluid flow rate. The instructions cause the controller to calculate an exhaust flow rate of the system based on at least the first temperature, the rotational speed, and the purging fluid flow rate. The instructions cause the controller to control the system to isolate a fuel source from the gas turbine at a portion of normal operating speed sufficient to achieve a purging volume during coast down.