Method for manufacturing a panel for reflective broadband electromagnetic shield
    3.
    发明授权
    Method for manufacturing a panel for reflective broadband electromagnetic shield 有权
    反射式宽带电磁屏蔽面板制造方法

    公开(公告)号:US09144185B1

    公开(公告)日:2015-09-22

    申请号:US12948938

    申请日:2010-11-18

    IPC分类号: H01F3/04 H01F7/06 H05K9/00

    摘要: A panel for an electromagnetic shield includes a light-weight, porous, electrically-conductive core layer of metallic foam having generally parallel opposed surfaces and a face sheet having rigidity properties superior to the rigidity properties of the core layer laminated to a surface of the core layer. Alternatively, a panel for a broadband electromagnetic shield includes a composite fiber-reinforced core having opposed surfaces and a layered electrically-conductive composite cover disposed on a surface of the core. The cover includes a first stratum of porous metal exhibiting pronounced low-frequency electromagnetic shielding properties and a second stratum of electrically-conductive elements exhibiting pronounced high-frequency electromagnetic shielding properties secured in an overlapping electrically-continuous relationship to the first stratum, the first stratum being a metallic lattice, and the electrically-conductive elements being a non-woven veil of electrically-nonconductive metal-coated fibers.

    摘要翻译: 用于电磁屏蔽的面板包括具有大致平行的相对表面的金属泡沫的重量轻,多孔,导电的核心层和具有优于层叠到芯的表面的芯层的刚性特性的刚性特性的面板 层。 或者,用于宽带电磁屏蔽的面板包括具有相对表面的复合纤维增强芯和设置在芯的表面上的层状导电复合材料盖。 该覆盖物包括具有显着的低频电磁屏蔽性能的多孔金属的第一层和具有以与第一层重叠的电连续关系固定的显着的高频电磁屏蔽性能的第二层导电元件,第一层 是金属晶格,并且导电元件是非导电金属涂覆的纤维的非织造面纱。

    Electromagnetically shielded coverings for optical openings

    公开(公告)号:US10257965B1

    公开(公告)日:2019-04-09

    申请号:US15640126

    申请日:2017-06-30

    IPC分类号: H05K9/00 B32B15/08 B32B15/20

    摘要: The electromagnetic shielding of an enclosable building structure is provided by applying a shielded covering to overlay optical openings in the building structure. The shielded covering comprises a metal-coated woven substrate and a shielding coupling. The metal-coated woven substrate has a woven substrate and a metal coating. The woven substrate may be organic and comprise threads of intermingled fibers such as silk fibers. The metal-coated woven substrate may also have a protection feature such as transparent resin, of barriers of glass or transparent polymeric material. The shielded coupling connects the shielded covering to other shielding components of a shielded building structure to preserve shielding continuity over the interface between shielding components.

    PANEL FOR BROADBAND ELECTROMAGNETIC SHIELDING
    5.
    发明申请
    PANEL FOR BROADBAND ELECTROMAGNETIC SHIELDING 有权
    宽带电磁屏蔽面板

    公开(公告)号:US20150366107A1

    公开(公告)日:2015-12-17

    申请号:US14832918

    申请日:2015-08-21

    IPC分类号: H05K9/00

    摘要: A panel for an electromagnetic shield includes a light-weight, porous, electrically-conductive core layer of metallic foam having generally parallel opposed surfaces and a face sheet having rigidity properties superior to the rigidity properties of the core layer laminated to a surface of the core layer. Alternatively, a panel for a broadband electromagnetic shield includes a composite fiber-reinforced core having opposed surfaces and a layered electrically-conductive composite cover disposed on a surface of the core. The cover includes a first stratum of porous metal exhibiting pronounced low-frequency electromagnetic shielding properties and a second stratum of electrically-conductive elements exhibiting pronounced high-frequency electromagnetic shielding properties secured in an overlapping electrically-continuous relationship to the first stratum, the first stratum being a metallic lattice, and the electrically-conductive elements being a non-woven veil of electrically-nonconductive metal-coated fibers.

    摘要翻译: 用于电磁屏蔽的面板包括具有大致平行的相对表面的金属泡沫的重量轻,多孔,导电的核心层和具有优于层叠到芯的表面的芯层的刚性特性的刚性特性的面板 层。 或者,用于宽带电磁屏蔽的面板包括具有相对表面的复合纤维增强芯和设置在芯的表面上的层状导电复合材料盖。 该覆盖物包括具有显着的低频电磁屏蔽性能的多孔金属的第一层,和具有以与第一层重叠的电连续关系固定的显着的高频电磁屏蔽性能的第二层导电元件,第一层 是金属晶格,并且导电元件是非导电金属涂覆的纤维的非织造面纱。

    Electrically-conductive nanocomposite material
    6.
    发明授权
    Electrically-conductive nanocomposite material 有权
    导电纳米复合材料

    公开(公告)号:US08361608B1

    公开(公告)日:2013-01-29

    申请号:US12261006

    申请日:2008-10-29

    IPC分类号: B32B15/04 B32B25/02

    摘要: An electromagnetically active composite has an electrically-nonconductive host matrix and electrically-conductive nanostrand bodies embedded in a substantially uniform distribution throughout the host matrix. Each of the nanostrand bodies comprises a volume containing at least one nanostrand of filamentary metal. Adjacent nanostrand bodies that are sufficiently mutually proximate will interact electromagnetically with each other. The filamentary metal of the one or more nanostrands in each of the nanostrand bodies occupies a deminimus fraction of the overall volume occupied by the at least one nanostrand that comprises each of the nanostrand bodies. The filamentary metal is chosen from among the group of metals that includes nickel, nickel aluminides, iron, iron aluminides, alloys of nickel and iron, and alloys of nickel and copper. Individual nanostrands of the nanostrand bodies have an average diameter in a range of from about 10 nanometers to about 4000 nanometers, and the average diameter of the nanostrand bodies is in a range of from about one micron to about 3000 microns.

    摘要翻译: 电磁活性复合材料具有非导电性主体基体和导电性纳米线体,其嵌入整个主体基质中基本均匀的分布。 纳米体系中的每一个都包括含有至少一个纳米级丝状金属的体积。 彼此相邻的相邻纳体绞体将彼此电磁相互作用。 每个纳米束体中的一个或多个纳米级的丝状金属占据由至少一个纳米级占据的总体积的极大部分,其包括每个纳米体。 丝状金属选自包括镍,镍铝,铁,铁铝,镍和铁的合金以及镍和铜的合金的金属组。 纳米体的单个纳米线具有在约10纳米至约4000纳米范围内的平均直径,并且纳米体的平均直径在约1微米至约3000微米的范围内。

    Electromagnetically shielded coverings for optical openings

    公开(公告)号:US10674644B1

    公开(公告)日:2020-06-02

    申请号:US16378393

    申请日:2019-04-08

    IPC分类号: B32B15/08 B32B15/20 H05K9/00

    摘要: The electromagnetic shielding of an enclosable building structure is provided by applying a shielded covering to overlay optical openings in the building structure. The shielded covering comprises a metal-coated woven substrate and a shielding coupling. The metal-coated woven substrate has a woven substrate and a metal coating. The woven substrate may be organic and comprise threads of intermingled fibers such as silk fibers. The metal-coated woven substrate may also have a protection feature such as transparent resin, of barriers of glass or transparent polymeric material. The shielded coupling connects the shielded covering to other shielding components of a shielded building structure to preserve shielding continuity over the interface between shielding components.

    Panel for broadband electromagnetic shielding

    公开(公告)号:US09801315B2

    公开(公告)日:2017-10-24

    申请号:US14832918

    申请日:2015-08-21

    IPC分类号: H05K9/00

    摘要: A panel for an electromagnetic shield includes a light-weight, porous, electrically-conductive core layer of metallic foam having generally parallel opposed surfaces and a face sheet having rigidity properties superior to the rigidity properties of the core layer laminated to a surface of the core layer. Alternatively, a panel for a broadband electromagnetic shield includes a composite fiber-reinforced core having opposed surfaces and a layered electrically-conductive composite cover disposed on a surface of the core. The cover includes a first stratum of porous metal exhibiting pronounced low-frequency electromagnetic shielding properties and a second stratum of electrically-conductive elements exhibiting pronounced high-frequency electromagnetic shielding properties secured in an overlapping electrically-continuous relationship to the first stratum, the first stratum being a metallic lattice, and the electrically-conductive elements being a non-woven veil of electrically-nonconductive metal-coated fibers.

    Electrically conductive nanocomposite material
    9.
    发明授权
    Electrically conductive nanocomposite material 有权
    导电纳米复合材料

    公开(公告)号:US09287023B2

    公开(公告)日:2016-03-15

    申请号:US13747647

    申请日:2013-01-23

    摘要: An electromagnetically active composite has an electrically-nonconductive host matrix and electrically-conductive nanostrand bodies embedded in a substantially uniform distribution throughout the host matrix. Each of the nanostrand bodies comprises a volume containing at least one nanostrand of filamentary metal. Adjacent nanostrand bodies that are sufficiently mutually proximate will interact electromagnetically with each other. The filamentary metal of the one or more nanostrands in each of the nanostrand bodies occupies a deminimus fraction of the overall volume occupied by the at least one nanostrand that comprises each of the nanostrand bodies. The filamentary metal is chosen from among the group of metals that includes nickel, nickel aluminides, iron, iron aluminides, alloys of nickel and iron, and alloys of nickel and copper. Individual nanostrands of the nanostrand bodies have an average diameter in a range of from about 10 nanometers to about 4000 nanometers, and the average diameter of the nanostrand bodies is in a range of from about one micron to about 3000 microns.

    摘要翻译: 电磁活性复合材料具有非导电性主体基体和导电性纳米线体,其嵌入整个主体基质中基本均匀的分布。 纳米体系中的每一个都包括含有至少一个纳米级丝状金属的体积。 彼此相邻的相邻纳体绞体将彼此电磁相互作用。 每个纳米束体中的一个或多个纳米级的丝状金属占据由至少一个纳米级占据的总体积的极大部分,其包括每个纳米体。 丝状金属选自包括镍,镍铝,铁,铁铝,镍和铁的合金以及镍和铜的合金的金属组。 纳米体的单个纳米线具有在约10纳米至约4000纳米范围内的平均直径,并且纳米体的平均直径在约1微米至约3000微米的范围内。

    ELECTRICALLY CONDUCTIVE NANOCOMPOSITE MATERIAL
    10.
    发明申请
    ELECTRICALLY CONDUCTIVE NANOCOMPOSITE MATERIAL 有权
    电导电纳米复合材料

    公开(公告)号:US20130134364A1

    公开(公告)日:2013-05-30

    申请号:US13747647

    申请日:2013-01-23

    IPC分类号: H01B13/00

    摘要: An electromagnetically active composite has an electrically-nonconductive host matrix and electrically-conductive nanostrand bodies embedded in a substantially uniform distribution throughout the host matrix. Each of the nanostrand bodies comprises a volume containing at least one nanostrand of filamentary metal. Adjacent nanostrand bodies that are sufficiently mutually proximate will interact electromagnetically with each other. The filamentary metal of the one or more nanostrands in each of the nanostrand bodies occupies a deminimus fraction of the overall volume occupied by the at least one nanostrand that comprises each of the nanostrand bodies. The filamentary metal is chosen from among the group of metals that includes nickel, nickel aluminides, iron, iron aluminides, alloys of nickel and iron, and alloys of nickel and copper. Individual nanostrands of the nanostrand bodies have an average diameter in a range of from about 10 nanometers to about 4000 nanometers, and the average diameter of the nanostrand bodies is in a range of from about one micron to about 3000 microns.

    摘要翻译: 电磁活性复合材料具有非导电性主体基体和导电性纳米线体,其嵌入整个主体基质中基本均匀的分布。 纳米体系中的每一个都包括含有至少一个纳米级丝状金属的体积。 彼此相邻的相邻纳体绞体将彼此电磁相互作用。 每个纳米束体中的一个或多个纳米级的丝状金属占据由至少一个纳米级占据的总体积的极大部分,其包括每个纳米体。 丝状金属选自包括镍,镍铝,铁,铁铝,镍和铁的合金以及镍和铜的合金的金属组。 纳米体的单个纳米线具有在约10纳米至约4000纳米范围内的平均直径,并且纳米体的平均直径在约1微米至约3000微米的范围内。