摘要:
A dual dielectric structure is employed in the fabrication of thin film field effect transistors in a matrix addressed liquid display to provide improved transistor device characteristics and also to provide both electrical and chemical isolation for material employed in the gate metallization layer. In particular, the use of a layer of silicon oxide over the gate metallization layer is not only consistent with providing the desired electrical and chemical isolation, but also with providing redundant gate metallization material to be employed beneath source or data lines for electrical circuit redundancy. Gate line redundancy is also possible. The electrical and chemical isolation provided by the dual dielectric layer reduces the possibilities of short circuits occurring in the display. The absence of short circuits together with the improved redundancy characteristics significantly increase manufacturing yield. As display sizes increase, the yield problem becomes more and more significant, generally growing as the square of the diagonal measurement of the screen. The structure in the present invention also significantly reduces gate leakage current. In the process and structure of the present invention, gate electrode material is separated from semiconductor material by the aforementioned dual dielectric, typically comprising layers of silicon oxide disposed beneath a layer of silicon nitride which is, in turn, disposed beneath the active amorphous silicon semiconductor material.
摘要:
A dual dielectric structure is employed in the fabrication of thin film field effect transistors in a matrix addressed liquid display to provide improved transistor device characteristics and also to provide both electricial and chemical isolation for material employed in the gate metallization layer. In particular, the use of a layer of silicon oxide over the gate metallization layer is not only consistent with providing the desired electrical and chemical isolation, but also with providing redundant gate metallization material to be employed beneath source or data lines for electrical circuit redundancy. Gate line redundancy is also possible. The electrical and chemical isolation provided by the dual dielectric layer reduces the possibilities of short circuits occurring in the display. The absence of short circuits together with the improved redundancy characteristics significantly increase manufacturing yield. As display sizes increase, the yield problem becomes more and more significant, generally growing as the square of the diagonal measurement of the screen. The structure in the present invention also significantly reduces gate leakage current. In the process and structure of the present invention, gate electrode material is separated from semiconductor material by the aforementioned dual dielectric, typically comprising layers of silicon oxide disposed beneath a layer of silicon nitride which is, in turn, disposed beneath the active amorphous silicon semiconductor material.
摘要:
A low noise fluoroscopic radiation imager includes a large area photosensor array having a plurality of photosensors arranged in a pattern so as to have a predetermined pitch, and a low noise addressable thin film transistor (TFT) array electrically coupled to the photosensors. The TFT array includes a plurality of low charge retention TFTs, each of which have a switched silicon region that has an area in microns not greater than the value of the pitch of the imager array expressed in microns. The portion of the switched silicon region underlying the source and drain electrodes of the TFT is not greater than about 150% of the portion of the switched silicon region in the channel area of the TFT. The ratio of the TFT channel width to channel length (the distance between the source and drain electrodes across the channel) is less than 20:1, and commonly less than 10:1, with the channel length in the range of between about 1 .mu.m and 4 .mu.m. The photosensor array also includes crossover regions between address lines that have substantially no silicon therebetween so that no switched silicon region exists at the crossovers.
摘要:
A solid state radiation imager that exhibits reduced capacitive coupling between pixel photodiodes and readout data lines, and thus further has reduced phantom images or image artifacts, includes a plurality of shield lines disposed at the same level of the device as the scan lines and associated gate electrodes for the switching transistors. The shield lines include respective pixel shielding spurs oriented along the same axis as the data lines and disposed between portions of the pixel photodiode and adjacent portions of the data lines. The shield lines are typically coupled to a shield voltage source such that the shield lines are maintained at a common potential.
摘要:
A radiation imager includes a photosensor barrier layer disposed between an amorphous silicon photosensor array and the scintillator. The barrier layer includes two strata, the first stratum being silicon oxide disposed over the upper conductive layer of the photosensor array and the second stratum is silicon nitride that is disposed over the first stratum. The photosensor barrier layer has a shape that substantially conforms to the the shape of the underlying upper conductive layer and has a maximum thickness of about 3 microns. The silicon oxide and silicon nitride are deposited in a vapor deposition process at less than about 250.degree. C. using tetraethoxysilane (TEOS) as the silicon source gas.
摘要:
A radiation imager includes a photodetector array having topographically patterned surface features, which include support islands disposed over the active portion of one or more photodetectors in the photodetector array. A structured scintillator array having individual columnar scintillator elements is disposed in fixed relation to the photodetector array so that the individual scintillator elements are disposed on scintillator support islands. A barrier layer is disposed between the support islands and the photodetector array to minimize chemical interactions between the material forming the support island and the underlying photodetector array during the fabrication process. After the support islands have been patterned, the scintillator elements are grown by selectively depositing scintillator material on the support islands.
摘要:
A solid state detector in which each scintillator is optimally configured and coupled with its associated sensing diode in a way which exploits light piping effects to enhance efficiency. Preferably, the detector is modular in nature. Each scintillator is a crystal having an index of refraction which differs as a function of direction through the crystal lattice, with the lowest index of refraction being parallel to the cleavage plane. The sides of each scintillator bar conform with the cleavage plane and are highly polished to light pipe photons created in the scintillator to the rear face for collection by an associated photodiode. The rear face is roughened to de-trap light, allowing transfer from the scintillator to the diode. Optical coupling means join the scintillators to their associated diodes to further enhance light transfer.
摘要:
A photosensitive element has a two tier passivation layer disposed between the top contact layer and the amorphous silicon photosensor island. The passivation layer includes an inorganic moisture barrier layer which is disposed at least over the sidewalls of the photosensor island. The inorganic material forming this layer is preferably silicon nitride or silicon oxide. An organic dielectric layer is disposed over the moisture barrier layer and the photosensor island except for a selected contact area on the top surface of the photosensor island where the top contact layer is in electrical contact with the amorphous silicon material of the photosensor island. The organic dielectric material is preferably a polyimide.
摘要:
A radiation imager having a scintillator mated to a photodetector array has a moisture barrier disposed over at least the portion of the scintillator exposed to the incident radiation. The moisture barrier, which is substantially impervious to moisture, is both radiation transmissive and optically reflective. A pellicle layer may be disposed between the top surface of the scintillator array and the moisture barrier to provide a stable surface to which the moisture barrier can adhere. The moisture barrier normally comprises an optically reflective layer and a moisture sealant layer. The optically reflective layer is comprised of a reflective metal or dielectric layers have different refractive indices and the moisture sealant layer is comprised of a silicone potting compound. A hardened protective window may be situated over the top surface of the moisture barrier.
摘要:
A solid state x-ray detector has a scintillator element converting x-ray flux to fluorescence photons, a photosensor detecting the x-ray induced fluorescence of the scintillator, and collimator plates of a high atomic number material and having thickened end regions disposed toward the x-ray source to prevent the x-ray flux from impinging upon the edge region of a misaligned scintillator element.