摘要:
A microprocessor executes at 100 native MIPS peak performance with a 100-MHz internal clock frequency. Central processing unit (CPU) instruction sets are hardwired, allowing most instructions to execute in a single cycle. A “flow-through” design allows the next instruction to start before the prior instruction completes, thus increasing performance. A microprocessing unit (MPU) contains 52 general-purpose registers, including 16 global data registers, an index register, a count register, a 16-deep addressable register/return stack, and an 18-deep operand stack. Both stacks contain an index register in the top elements, are cached on chip, and when required, automatically spill to and refill from external memory. The stacks minimize the data movement and also minimize memory access during procedure calls, parameter passing, and variable assignments. Additionally, the MPU contains a mode/status register and 41 locally addressed registers for I/O, control, configuration, and status. The CPU contains both a high-performance, zero-operand, dual-stack architecture MPU, and an input-output processor (IOP) that executes instructions to transfer data, count events, measure time, and perform other timing-dependent functions. A zero-operand stack architecture eliminates operand bits. Stacks also minimize register saves and loads within and across procedures, thus allowing shorter instruction sequences and faster-running code. Instructions are simple to decode and execute, allowing the MPU and IOP to issue and complete instructions in a single clock cycle—each at 100 native MIPS peak execution. Using 8-bit opcodes, the CPU obtains up to four instructions from memory each time an instruction fetch or pre-fetch is performed. These instructions can be repeated without rereading them from memory. This maintains high performance when connected directly to DRAM, without a cache.
摘要:
A microprocessor executes at 100 native MIPS peak performance with a 100-MHz internal clock frequency. Central processing unit (CPU) instruction sets are hardwired, allowing most instructions to execute in a single cycle. A “flow-through” design allows the next instruction to start before the prior instruction completes, thus increasing performance. A microprocessing unit (MPU) contains 52 general-purpose registers, including 16 global data registers, an index register, a count register, a 16-deep addressable register/return stack, and an 18-deep operand stack. Both stacks contain an index register in the top elements, are cached on chip, and when required, automatically spill to and refill from external memory. The stacks minimize the data movement and also minimize memory access during procedure calls, parameter passing, and variable assignments. Additionally, the MPU contains a mode/status register and 41 locally addressed registers for I/O, control, configuration, and status. The CPU contains both a high-performance, zero-operand, dual-stack architecture MPU, and an input-output processor (IOP) that executes instructions to transfer data, count events, measure time, and perform other timing-dependent functions. A zero-operand stack architecture eliminates operand bits. Stacks also minimize register saves and loads within and across procedures, thus allowing shorter instruction sequences and faster-running code. Instructions are simple to decode and execute, allowing the MPU and IOP to issue and complete instructions in a single clock cycle—each at 100 native MIPS peak execution. Using 8-bit opcodes, the CPU obtains up to four instructions from memory each time an instruction fetch or pre-fetch is performed. These instructions can be repeated without rereading them from memory. This maintains high performance when connected directly to DRAM, without a cache.
摘要:
A microprocessor executes at 100 native MIPS peak performance with a 100-MHz internal clock frequency. Central processing unit (CPU) instruction sets are hardwired, allowing most instructions to execute in a single cycle. A “flow-through” design allows the next instruction to start before the prior instruction completes, thus increasing performance. A microprocessing unit (MPU) contains 52 general-purpose registers, including 16 global data registers, an index register, a count register, a 16-deep addressable register/return stack, and an 18-deep operand stack. Both stacks contain an index register in the top elements, are cached on chip, and when required, automatically spill to and refill from external memory. The stacks minimize the data movement and also minimize memory access during procedure calls, parameter passing, and variable assignments. Additionally, the MPU contains a mode/status register and 41 locally addressed registers for I/O, control, configuration, and status. The CPU contains both a high-performance, zero-operand, dual-stack architecture MPU, and an input-output processor (IOP) that executes instructions to transfer data, count events, measure time, and perform other timing-dependent functions. A zero-operand stack architecture eliminates operand bits. Stacks also minimize register saves and loads within and across procedures, thus allowing shorter instruction sequences and faster-running code. Instructions are simple to decode and execute, allowing the MPU and IOP to issue and complete instructions in a single clock cycle—each at 100 native MIPS peak execution. Using 8-bit opcodes, the CPU obtains up to four instructions from memory each time an instruction fetch or pre-fetch is performed. These instructions can be repeated without rereading them from memory. This maintains high performance when connected directly to DRAM, without a cache.
摘要:
A microprocessor executes at 100 native MIPS peak performance with a 100-MHz internal clock frequency. Central processing unit (CPU) instruction sets are hardwired, allowing most instructions to execute in a single cycle. A “flow-through” design allows the next instruction to start before the prior instruction completes, thus increasing performance. A microprocessing unit (MPU) contains 52 general-purpose registers, including 16 global data registers, an index register, a count register, a 16-deep addressable register/return stack, and an 18-deep operand stack. Both stacks contain an index register in the top elements, are cached on chip, and when required, automatically spill to and refill from external memory. The stacks minimize the data movement and also minimize memory access during procedure calls, parameter passing, and variable assignments. Additionally, the MPU contains a mode/status register and 41 locally addressed registers for I/O, control, configuration, and status. The CPU contains both a high-performance, zero-operand, dual-stack architecture MPU, and an input-output processor (IOP) that executes instructions to transfer data, count events, measure time, and perform other timing-dependent functions. A zero-operand stack architecture eliminates operand bits. Stacks also minimize register saves and loads within and across procedures, thus allowing shorter instruction sequences and faster-running code. Instructions are simple to decode and execute, allowing the MPU and IOP to issue and complete instructions in a single clock cycle—each at 100 native MIPS peak execution. Using 8-bit opcodes, the CPU obtains up to four instructions from memory each time an instruction fetch or pre-fetch is performed. These instructions can be repeated without rereading them from memory. This maintains high performance when connected directly to DRAM, without a cache.
摘要:
A microprocessor executes at 100 native MIPS peak performance with a 100-MHz internal clock frequency. Central processing unit (CPU) instruction sets are hardwired, allowing most instructions to execute in a single cycle. A “flow-through” design allows the next instruction to start before the prior instruction completes, thus increasing performance. A microprocessing unit (MPU) contains 52 general-purpose registers, including 16 global data registers, an index register, a count register, a 16-deep addressable register/return stack, and an 18-deep operand stack. Both stacks contain an index register in the top elements, are cached on chip, and when required, automatically spill to and refill from external memory. The stacks minimize the data movement and also minimize memory access during procedure calls, parameter passing, and variable assignments. Additionally, the MPU contains a mode/status register and 41 locally addressed registers for I/O, control, configuration, and status. The CPU contains both a high-performance, zero-operand, dual-stack architecture MPU, and an input-output processor (IOP) that executes instructions to transfer data, count events, measure time, and perform other timing-dependent functions. A zero-operand stack architecture eliminates operand bits. Stacks also minimize register saves and loads within and across procedures, thus allowing shorter instruction sequences and faster-running code. Instructions are simple to decode and execute, allowing the MPU and IOP to issue and complete instructions in a single clock cycle—each at 100 native MIPS peak execution. Using 8-bit opcodes, the CPU obtains up to four instructions from memory each time an instruction fetch or pre-fetch is performed. These instructions can be repeated without rereading them from memory. This maintains high performance when connected directly to DRAM, without a cache.
摘要:
A microprocessor executes at 100 native MIPS peak performance with a 100-MHz internal clock frequency. Central processing unit (CPU) instruction sets are hardwired, allowing most instructions to execute in a single cycle. A “flow-through” design allows the next instruction to start before the prior instruction completes, thus increasing performance. A microprocessing unit (MPU) contains 52 general-purpose registers, including 16 global data registers, an index register, a count register, a 16-deep addressable register/return stack, and an 18-deep operand stack. Both stacks contain an index register in the top elements, are cached on chip, and when required, automatically spill to and refill from external memory. The stacks minimize the data movement and also minimize memory access during procedure calls, parameter passing, and variable assignments. Additionally, the MPU contains a mode/status register and 41 locally addressed registers for I/O, control, configuration, and status. The CPU contains both a high-performance, zero-operand, dual-stack architecture MPU, and an input-output processor (IOP) that executes instructions to transfer data, count events, measure time, and perform other timing-dependent functions. A zero-operand stack architecture eliminates operand bits. Stacks also minimize register saves and loads within and across procedures, thus allowing shorter instruction sequences and faster-running code. Instructions are simple to decode and execute, allowing the MPU and IOP to issue and complete instructions in a single clock cycle—each at 100 native MIPS peak execution. Using 8-bit opcodes, the CPU obtains up to four instructions from memory each time an instruction fetch or pre-fetch is performed. These instructions can be repeated without rereading them from memory. This maintains high performance when connected directly to DRAM, without a cache.
摘要:
A resource broker agent may be configured to monitor computing resources available on a computing device. The resource broker agent may be further configured to request additional computing resources in response to detecting a request to perform a computing task that cannot be adequately performed with the computing resources currently available on the computing device. The additional computing resources may be requested from one or more remote resource providers via a network. The additional computing resources may comprise remote execution of portions of the computing task. The resource broker agent may be further configured to perform the requested computing task by use of a virtualized computing environment of the computing device.
摘要:
The invention relates generally to novel macrolactams and their analogs, to processes for the preparation of these novel macrolactams, to pharmaceutical compositions comprising the novel macrolactams; and to methods of using the novel macrolactams to treat or inhibit various disorders.
摘要:
An imaging pixel array and associated method and system are disclosed in which the array contains first pixels each having a first photo-conversion device, and second pixels each having a first photo-conversion device and a second photo-conversion device. The first photo-conversion devices are configured to acquire an image during a first integration period. The second photo-conversion devices are configured to acquire a plurality of images during the first integration period. A circuit uses the plurality of image signals and determines from them relative motion between the array and an image during a portion of the first integration period and provides a signal representing the motion which is used for image stabilization.
摘要:
A microprocessor system in which an array of processors communicates more efficiently through the use of a worker mode function. Processors that are not currently executing code remain in an inactive but alert state until a task is sent to them by an adjacent processor. Processors can also be programmed to temporarily suspend a task to check for incoming tasks or messages.