摘要:
A power converter apparatus, such as an uninterruptible power supply (UPS), includes an inverter having an input coupled to a first DC bus and a second DC bus and configured to generate an AC output with respect to a neutral terminal at a phase output terminal thereof. The apparatus further includes first and second neutral coupling circuits, each configured to selectively couple the first DC bus and the second DC bus to the neutral terminal, and a control circuit configured to cause interleaved operation of the neutral coupling circuits.
摘要:
A gate-drive circuit (10) is an interface between a clock (12) and control circuit (14) and a circuit (16) comprising an isolated gate bipolar transistor (IGBT) devices. The clock (12) provides two complementary clock signals (CLK1, CLK2) to the gate-drive circuit (10); the control circuit provides a signal (ENABLE) for turning the gate-drive circuit on and off, and the gate-drive circuit outputs isolated supply voltages (+RAIL, -RAIL), a drive signal (GATE), and a common reference signal (EMITTER). The control signal is sent across an isolation boundary via a 2-MHz push-pull converter in the gate-drive circuit (10). A transformer (T1) in the gate-drive circuit provides the isolation boundary. The power required to switch the IGBT device (16) is sent through the same 2-MHz converter. The secondary of the 2-MHz push-pull transformer (T1) is referenced to the IGBT emitter. As the primary side circuitry receives "on" signals from the control board (14), the converter runs and charges secondary-side bulk storage capacitors (C16, C18) in the gate-drive circuit. The gate voltage of the IGBT device is held off until the bulk storage capacitors are charged to a minimum value. When the capacitors have charged, the IGBT gate is turned on as the signal is received from the push-pull converter. The gate is then turned off by a negative voltage when the signal received from the converter is removed.
摘要:
A buck/boost converter is driven by a high frequency dc-to-dc flyback converter to provide substantially constant output power, independent of the output voltage, to an inductor to provide current to a load having a v-i characteristic that is suitable for use with a current power source, such as a plurality of parallely-connected LEDs. The flyback converter repetitively generates a battery-simulated output voltage that is current-limited and which may be used to charge a battery as well as to provide power to the buck/boost converter. The buck/boost converter includes a switching circuit for repetitively transferring current to the load and a current sensor circuit operating in conjunction with the switching circuit to change the state of the buck/boost converter to repetitively open the switching means and initiate release of the current to the load.
摘要:
A fault in a DC power source, such as a battery string or a string of photovoltaic cells, is identified by detecting a change in an AC component of a residual current of the DC power source. In some embodiments, the DC power source is coupled to at least one DC bus and the methods further include generating an AC voltage on the at least one DC bus. For example, the DC power source may be coupled to a modulated DC bus of an uninterruptible power supply (UPS) system comprising an inverter having an input coupled to the DC bus. The inverter may be configured to generate an AC output voltage and the AC component has a frequency that is a harmonic of a fundamental frequency of the AC output voltage, such as a third harmonic of the fundamental frequency of the AC output voltage.
摘要:
An inductor includes an elongate magnetic core, a coil wrapped around the core and a spacer that separates the coil from the core to provide a coolant passage between the coil and the core. The coolant passage may include an air passage that extends substantially parallel to an axis of the core and that has first and second openings proximate respective first and second ends of the core. The coil may include a twisted bundle of individually insulated conductors. The inductor may be housed in a flux-tolerant compartment, i.e., a conductive aluminum structure that supports eddy currents with relatively acceptable resistive losses.
摘要:
An apparatus, such as an inverter or rectifier in a double-conversion UPS, includes a plurality of power switching devices, such as IGBTs, coupled in parallel. A drive circuit is coupled to the power switching devices at a plurality of drive nodes and configured to drive the drive nodes responsive to a drive control signal. A monitoring circuit is coupled to the drive circuit and configured to determine respective statuses of respective ones of the power switching devices. The monitoring circuit may be configured to generate respective measures of drive delivered to respective ones of the drive nodes.
摘要:
An uninterruptible power supply (UPS) system includes an AC input port, a DC input port, and an output port configured to be connected to an AC load. A rectifier circuit is coupled to the AC input port, and a power transfer control circuit is coupled to the rectifier circuit output, the DC input port and the output port. The power transfer control circuit produces a DC voltage at the AC load from a rectified voltage produced by the rectifier circuit in a first mode of operation and from a DC voltage at the DC input port in a second mode of operation. A current control circuit, e.g., a boost regulator, may control a current from at least one of the rectifier circuit and the DC input port responsive to a control input. A DC/DC converter circuit may be coupled between the DC input port and the output port.
摘要翻译:不间断电源(UPS)系统包括交流输入端口,直流输入端口和配置为连接到交流负载的输出端口。 整流电路耦合到AC输入端口,电源传输控制电路耦合到整流电路输出,DC输入端口和输出端口。 功率传递控制电路在第一操作模式下,由整流电路产生的整流电压和在第二操作模式下的直流输入端口处的直流电压,在交流负载下产生直流电压。 电流控制电路,例如升压调节器,可以响应于控制输入来控制来自整流器电路和DC输入端口中的至少一个的电流。 DC / DC转换器电路可以耦合在DC输入端口和输出端口之间。
摘要:
An uninterruptable power supply system for producing an AC voltage from at least one of a DC power source or an AC power source includes an input terminal configured to receive an AC voltage from an AC power source, and an inverter operative to produce an AC voltage at an output thereof from a DC power source. A ferroresonant transformer circuit includes a transformer having an input winding, a output winding, and a third winding that forms part of a resonant circuit that produces saturation in the output winding when an AC voltage on the input winding exceeds a predetermined amplitude. A transformer input control circuit is coupled to the input terminal and to the inverter output and is operative to couple at least one of the input terminal and the inverter output to the input winding. The transformer input control circuit variably couples the input terminal to the input winding responsive to at least one of a voltage at the input terminal, a current in the output winding, a voltage on the output winding and a current at the input terminal. Related voltage regulators and methods are also described.
摘要:
A resonant tank circuit has an output port configured to be coupled to a load comprising a current-controlled semiconductor device, such as a diode, thyristor, transistor or the like. A voltage generator circuit is configured to intermittently apply voltages to an input port of the resonant tank circuit in successive intervals having a duration equal to or greater than a resonant period of the resonant tank circuit. Such an arrangement may be used, for example, to drive a static switch.
摘要:
Uninterruptible Power Supply (UPS) systems and methods for a communications signal distribution system, such as a cable television (CATV) signal distribution system that distributes a communication signal and an Alternating Current (AC) power over a coaxial cable having a conductor and a sheath, include an input neutral line and an input voltage line. A first circuit is configured to convert an input voltage between the input neutral line and the input voltage line into first and second complementary Direct Current (DC) voltages. A second circuit is configured to convert the first and second complementary DC voltages into an AC voltage between an output neutral line and an output voltage line, and to connect the output neutral line to a coaxial cable sheath and the output voltage line to a coaxial cable conductor. The first and second circuits are configured to connect the input neutral line to the output neutral line without an intervening transformer winding.