摘要:
A method for co-registering images of tissue slices stained with different biomarkers displays a first digital image of a first tissue slice on a graphical user interface such that an area of the first image is enclosed by a frame. Then a portion of a second image of a second tissue slice is displayed such that the area of the first image enclosed by the frame is co-registered with the displayed portion of the second image. The displayed portion of the second image has the shape of the frame. The tissue slices are both z slices of a tissue sample taken at corresponding positions in the x and y dimensions. The displayed portion of the second image is shifted in the x and y dimensions to coincide with the area of the first image that is enclosed by the frame as the user shifts the first image under the frame.
摘要:
A method of intuitively displaying values obtained from analyzing bio-medical images includes displaying a table of the values in a first pane of a graphical user interface. The table contains a user selectable row that includes a reference value and two numerical values. The reference value refers to an image of a tissue slice. The first numerical value is generated by performing image analysis on the image, and the second numerical value indicates a health state of the tissue. The image is displayed in a second pane of the graphical user interface in response to the user selecting the user selectable row. A graphical plot with a selectable symbol associated with the image is displayed in a third pane. The symbol has a position in the plot defined by the values. Alternatively, in response to the user selecting the selectable symbol, the image is displayed in the second pane.
摘要:
A method for determining whether a test biomarker is a stain for a type of cell component, such as membrane or nucleus, involves performing various segmentation processes on an image of tissue stained with the test biomarker. One segmentation process searches for a first cell component type, and another segmentation process searches for a second cell component type by segmenting only stained pixels. The test biomarker is identified as a stain for each component type if the process identifies the component based only on stained pixels. Whether the test biomarker is a membrane stain or nucleus stain is displayed on a graphical user interface. In addition, the method identifies stained pixels corresponding to a second cell component using pixels determined to correspond to a first cell component. An expression profile for the test biomarker is then displayed that indicates the proportion of stained pixels in each type of cell component.
摘要:
High-resolution digital images of adjacent slices of a tissue sample are acquired, and tiles are defined in the images. Values associated with image objects detected in each tile are calculated. The tiles in adjacent images are co-registered. A first hyperspectral image is generated using a first image, and a second hyperspectral image is generated using a second image. A first pixel of the first hyperspectral image has a first pixel value corresponding to a local value obtained using image analysis on a tile in the first image. A second pixel of the second hyperspectral image has a second pixel value corresponding to a local value calculated from a tile in the second image. A third hyperspectral image is generated by combining the first and second hyperspectral images. The third hyperspectral image is then displayed on a computer monitor using a false-color encoding generated using the first and second pixel values.
摘要:
An image-based biomarker is generated using image features obtained through object-oriented image analysis of medical images. The values of a first subset of image features are measured and weighted. The weighted values of the image features are summed to calculate the magnitude of a first image-based biomarker. The magnitude of the biomarker for each patient is correlated with a clinical endpoint, such as a survival time, that was observed for the patient whose medical images were analyzed. The correlation is displayed on a graphical user interface as a scatter plot. A second subset of image features is selected that belong to a second image-based biomarker such that the magnitudes of the second image-based biomarker for the patients better correlate with the clinical endpoints observed for those patients. The second biomarker can then be used to predict the clinical endpoint of other patients whose clinical endpoints have not yet been observed.
摘要:
A clinical decision support system performs a similarity search to determine the probable outcome of applying on a current patient those clinical actions that were performed on similar patients. The system analyzes stored electronic health records of similar patients so as to recommend diagnostic and therapeutic steps for the current patient. The system receives the health record of the patient, determines which clinical actions were already applied on the patient, generates classifiers associated with potential future clinical actions, generates a success value for each health record of another patient using the classifiers, displays the health record of the other patient having the greatest success value, and indicates a proposed clinical action that is to be applied on the patient. The system also calculates a quality value indicating the probability that a sequence of clinical actions that were applied to a similar patient will be successful if applied to the patient.
摘要:
In a specification mode, a user specifies classes of a class network and process steps of a process hierarchy using a novel scripting language. The classes describe what the user expects to find in digital images. The process hierarchy describes how the digital images are to be analyzed. Each process step includes an algorithm and a domain that specifies the classes on which the algorithm is to operate. A Cognition Program acquires table data that includes pixel values of the digital images, as well as metadata relating to the digital images. In an execution mode, the Cognition Program generates a data network in which pixel values are linked to objects, and objects are categorized as belonging to classes. The process steps, classes and objects are linked to each other in a computer-implemented network structure in a manner that enables the Cognition Program to detect target objects in the digital images.
摘要:
In a specification mode, a user specifies classes of a class network and process steps of a process hierarchy using a novel scripting language. The classes describe what the user expects to find in digital images. The process hierarchy describes how the digital images are to be analyzed. Each process step includes an algorithm and a domain that specifies the classes on which the algorithm is to operate. A Cognition Program acquires table data that includes pixel values of the digital images, as well as metadata relating to the digital images. In an execution mode, the Cognition Program generates a data network in which pixel values are linked to objects, and objects are categorized as belonging to classes. The process steps, classes and objects are linked to each other in a computer-implemented network structure in a manner that enables the Cognition Program to detect target objects in the digital images.
摘要:
A method for determining whether a test biomarker is a stain for a type of cell component, such as membrane or nucleus, involves performing various segmentation processes on an image of tissue stained with the test biomarker. One segmentation process searches for a first cell component type, and another segmentation process searches for a second cell component type by segmenting only stained pixels. The test biomarker is identified as a stain for each component type if the process identifies the component based only on stained pixels. Whether the test biomarker is a membrane stain or nucleus stain is displayed on a graphical user interface. In addition, the method identifies stained pixels corresponding to a second cell component using pixels determined to correspond to a first cell component. An expression profile for the test biomarker is then displayed that indicates the proportion of stained pixels in each type of cell component.
摘要:
A system for computer-aided detection uses a computer-implemented network structure to analyze patterns present in digital image slices of a human body and to generate a three-dimensional anatomical model of a patient. The anatomical model is generated by detecting easily identifiable organs first and then using those organs as context objects to detect other organs. A user specifies membership functions that define which objects of the network structure belong to the various classes of human organs specified in a class hierarchy. A membership function of a potentially matching class determines whether a candidate object of the network structure belongs to the potential class based on the relation between a property of the voxels linked to the candidate object and a property of the context object. Some voxel properties used to classify an object are location, brightness and volume. The human organs are then measured to assist in the patient's diagnosis.