摘要:
A method for mitigating phase pulling in multiple frequency source system includes generating a first signal, the first signal referred to as an existing signal operating at an existing frequency point, the existing signal having a predefined pulling bandwidth around the existing frequency point. A request is received to generate a prospective signal at a prospective frequency point which is within the predefined pulling bandwidth of the existing signal. The prospective frequency is removed from within the predefined pulling bandwidth, and the prospective and existing signals are generated at the corresponding frequency points.
摘要:
A phase lock loop circuit (60) has a phase frequency detector (62), a charge pump (64), an active filter (87) and a voltage-controlled oscillator (100). The phase detector generates signals responsive to reference signal FR and VCO output signal FV. A charge pump generates a voltage at the input of a first transmission gate (76) according to the values of the phase detector signals. A predetermined voltage is generated at the input of a second transmission gate (112). When the transmission gates (76, 110) are closed (low impedance) the charge pump may sink or source current to the inverting input of the operational amplifier (86) of the active filter 86 and the predetermined voltage is applied to the non-inverting input. When the transmission gates are open (high impedance state) the inverting input is electrically isolated from the node and the non-inverting output is isolated from the power supply.
摘要:
A multiple frequency source system includes at least one frequency source tunable to a predefined target frequency, and at least one additional frequency source operable to generate a second signal at a frequency which is either higher or lower than the target frequency. A method for tuning the tunable frequency source to the target frequency during concurrent generation of the second signal includes (i) controlling the tunable frequency source to tune to at least one frequency point frequency lower than the target frequency, and thereafter controlling the oscillator to tune to the target frequency, when the second signal is higher in frequency than the target frequency, or (ii) controlling the tunable frequency source to tune to at least one frequency point higher than the target frequency, and thereafter controlling the tunable frequency source to tune to the target frequency, when the second signal is lower in frequency than the target frequency.
摘要:
A tunable multiple frequency source system employing offset signal phasing includes a first frequency source, a phase delay element, and a second frequency source configured to operate concurrently with the first frequency source. The first frequency source includes an input coupled to receive a reference input signal and an output for providing a first frequency source signal. The phase delay includes an input coupled to receive the input reference signal, and an output, the phase delay element operable to apply a predefined phase delay to the input reference signal to produce a phase-delayed input signal. The second frequency source includes an input coupled to receive the phase-delayed input signal and an output for providing a second frequency source signal.
摘要:
A method for mitigating phase pulling in multiple frequency source system includes generating a first signal, the first signal referred to as an existing signal operating at an existing frequency point, the existing signal having a predefined pulling bandwidth around the existing frequency point. A request is received to generate a prospective signal at a prospective frequency point which is within the predefined pulling bandwidth of the existing signal. The prospective frequency is removed from within the predefined pulling bandwidth, and the prospective and existing signals are generated at the corresponding frequency points.
摘要:
A phase lock loop circuit (60) has a phase frequency detector (62), a charge pump (64), an active filter (87) and a voltage-controlled oscillator (100). The phase detector generates signals responsive to reference signal FR and VCO output signal FV. A charge pump generates a voltage at the input of a first transmission gate (76) according to the values of the phase detector signals. A predetermined voltage is generated at the input of a second transmission gate (112). When the transmission gates (76, 110) are closed (low impedance) the charge pump may sink or source current to the inverting input of the operational amplifier (86) of the active filter 86 and the predetermined voltage is applied to the non-inverting input. When the transmission gates are open (high impedance state) the inverting input is electrically isolated from the node and the non-inverting output is isolated from the power supply.
摘要:
A tunable multiple frequency source system employing offset signal phasing includes a first frequency source, a phase delay element, and a second frequency source configured to operate concurrently with the first frequency source. The first frequency source includes an input coupled to receive a reference input signal and an output for providing a first frequency source signal. The phase delay includes an input coupled to receive the input reference signal, and an output, the phase delay element operable to apply a predefined phase delay to the input reference signal to produce a phase-delayed input signal. The second frequency source includes an input coupled to receive the phase-delayed input signal and an output for providing a second frequency source signal.
摘要:
A multiple frequency source system includes at least one frequency source tunable to a predefined target frequency, and at least one additional frequency source operable to generate a second signal at a frequency which is either higher or lower than the target frequency. A method for tuning the tunable frequency source to the target frequency during concurrent generation of the second signal includes (i) controlling the tunable frequency source to tune to at least one frequency point frequency lower than the target frequency, and thereafter controlling the oscillator to tune to the target frequency, when the second signal is higher in frequency than the target frequency, or (ii) controlling the tunable frequency source to tune to at least one frequency point higher than the target frequency, and thereafter controlling the tunable frequency source to tune to the target frequency, when the second signal is lower in frequency than the target frequency.
摘要:
A phase lock loop circuit 60 has a phase frequency detector 62, a charge pump 64, an active filter 87 and a voltage-controlled oscillator 100. The phase detector generates UP and DN signals indicative of the relative frequency of FR, a reference signal, and FV, a signal controlled by the voltage-controlled oscillator. A charge pump using logic gates (buffer 66 and inverter 68) to produce a voltage drop over resistors 74 and 84 to generate a voltage at a node coupled to the input of transmission gate 76 according to the values of the UP and DN signals. When the transmission gate 76 is closed (low impedance) the charge pump may sink or source current to the inverting input of the operational amplifier 86 of the active filter 86. When the transmission gate is open (high impedance state) the inverting input is electrically isolated from the node.
摘要:
A transmitter architecture (200) provides for a stable and low noise modulator where the modulation bandwidth is uncorrelated to the TX loop bandwidth. The output signal (228) of the TX loop is demodulated by a demodulator (208) and the demodulated signal is compared by a comparator (206) with the modulating input signal (202). The output of the comparator is then used to adjust a digital pre-emphasis filter (204) which preconditions the modulating input signal (202) in the digital domain. The preconditioning approach of the present invention provides for low noise because the transmitter designer can chose a narrow band for the TX loop which will also filter out the noise coming from the additional synthesizer (226) used to down convert the input signal.