Abstract:
A method of dynamically- and continuously-variable rate asynchronous data transfer, such as for use in an electronic blasting system, may employ a device that transmits data including synchronization bits and bits conveying other information, and a device that ascertains the rate of transmission of the synchronization bits and receives the bits conveying the other information at the ascertained rate of transmission.
Abstract:
A method of reducing jitter in a local clock of a synchronised USB device attached to a USB Hub, the USB Hub having a local clock and repeater circuitry, comprising: observing a USB data stream with the USB Hub, the data stream having a data stream bit rate; the USB Hub decoding a periodic signal structure in the USB data stream; the USB Hub generating an event signal in response to decoding of the periodic signal structure; and the USB Hub locking a frequency of the local clock of the USB Hub to the periodic event signal. The local clock of the USB Hub is adapted to be a clocking source for the repeater circuitry of the USB Hub at substantially an integer multiple of a frequency of the data stream bit rate.
Abstract:
A method and system for synchronising a first device and at least one second device, each having a local oscillator and a microcontroller, and the second device being in data communication with the first device via a communication bus. The method comprises the first device transmitting a plurality of signals to the second device, the second device using the plurality of signals to measure the frequency of its local oscillator, the first device transmitting a signal to the second device indicative of a required frequency to be synchronised to, and the second device employing its microcontroller to configure itself to generate a local clock signal with the required frequency using the frequency of its local oscillator.
Abstract:
A method and apparatus for controlling the phase and frequency of the local clock of a USB device, the apparatus comprising circuitry for observing USB traffic and decoding from the USB traffic a periodic data structure containing information about the frequency and phase of a distributed clock frequency, and phase and circuitry for receiving the periodic data structure and generating from at least the periodic data structure a local clock signal locked in both frequency and phase to the periodic data structure. The circuitry for receiving the periodic data structure and generating the local clock signal can generate the local clock signal with a frequency that is a non-integral multiple of a frequency of the periodic data structure.
Abstract:
A system, for example an electronic blasting system, in which a command is issued by a master device to all slave devices connected to the system, causing all slave devices that have not been identified to the master device to respond with identifying information and optionally other information pertaining to the slave device.
Abstract:
A method of reducing jitter in a local clock of a synchronised USB device attached to a USB Hub, the USB Hub having a local clock and repeater circuitry, comprising: observing a USB data stream with the USB Hub, the data stream having a data stream bit rate; the USB Hub decoding a periodic signal structure in the USB data stream; the USB Hub generating an event signal in response to decoding of the periodic signal structure; and the USB Hub locking a frequency of the local clock of the USB Hub to the periodic event signal. The local clock of the USB Hub is adapted to be a clocking source for the repeater circuitry of the USB Hub at substantially an integer multiple of a frequency of the data stream bit rate.
Abstract:
A method and apparatus for controlling the phase and frequency of the local clock of a USB device, the apparatus comprising circuitry for observing USB traffic and decoding from the USB traffic a periodic data structure containing information about the frequency and phase of a distributed clock frequency, and phase and circuitry for receiving the periodic data structure and generating from at least the periodic data structure a local clock signal locked in both frequency and phase to the periodic data structure. The circuitry for receiving the periodic data structure and generating the local clock signal can generate the local clock signal with a frequency that is a non-integral multiple of a frequency of the periodic data structure.
Abstract:
A slave device for use in a system such as an electronic blasting system wherein a command is issued by a master device to all slave devices connected to the system, causing all slave devices that have not been identified to the master device to respond with identifying information and optionally other information.
Abstract:
A system such as an electronic blasting system, and a slave device for use in the system, in which a command is issued by a master device to all slave devices connected to the system, causing all slave devices that have not been identified to the master device to respond with identifying information and optionally other information pertaining to the slave device.