Abstract:
Ni—Co—Cr—Ta—P—B alloys and metallic glasses with controlled ranges are provided. The alloys demonstrate a combination of good glass forming ability, high toughness, and high stability of the supercooled liquid. The disclosed alloys are capable of forming metallic glass rods of diameters at least 3 mm and up to about 8 mm or greater. Certain alloys with good glass forming ability also have high notch toughness approaching 100 MPa m1/2, and stability of the supercooled liquid approaching 60° C.
Abstract:
A method of fluxing the melt of metallic glass forming alloys is provided. Alloys fluxed according to the disclosed methods demonstrate a critical rod diameter that does not vary by more than 60% when varying the melt overheating. Moreover, metallic glasses produced from alloys fluxed according to the disclosed methods demonstrate notch toughness that does not vary by more than 30% when varying the melt overheating. Furthermore, a method by which used feedstock is purified such that its toughness and glass forming ability is restored for reuse is also disclosed. Recycled feedstock purified according to the disclosed method demonstrates critical rod diameter that is at least 70% of the critical rod diameter of the as-formed alloy. Also, metallic glasses produced from recycled feedstock demonstrate notch toughness of at least 70% of the notch toughness of a metallic glass produced from the as-formed alloy.
Abstract:
Ni—Fe, Ni—Co, and Ni—Cu-based bulk metallic glass forming alloys are provided. The alloys have critical rod diameters of at least 1 mm and in some instances at least 11 mm. The alloys have composition according to Ni(100-a-b-c-d-e)XaCrbNbcPdBe, wherein X is at least one of Fe, Co, and Cu, the atomic percent X (Fe and/or Co and/or Cu) ranges from 0.5 to 30, the atomic percent of Cr ranges from 2 to 15, the atomic percent of Nb ranges from 1 to 5, the atomic percent of P ranges from 14 to 19, the atomic percent of B ranges from 1 to 5, and the balance is Ni.
Abstract:
Ni—Co—Cr—Ta—P—B alloys and metallic glasses with controlled ranges are provided. The alloys demonstrate a combination of good glass forming ability, high toughness, and high stability of the supercooled liquid. The disclosed alloys are capable of forming metallic glass rods of diameters at least 3 mm and up to about 8 mm or greater. Certain alloys with good glass forming ability also have high notch toughness approaching 100 MPa m1/2, and stability of the supercooled liquid approaching 60° C.
Abstract:
A rapid discharge heating and forming apparatus is provided. The apparatus includes a source of electrical energy and at least two electrodes configured to interconnect the source of electrical energy to a metallic glass sample. The apparatus also includes a shaping tool disposed in forming relation to the metallic glass sample. The source of electrical energy and the at least two electrodes are configured to deliver a quantum of electrical energy to the metallic glass sample to heat the metallic glass sample. The shaping tool is configured to apply a deformational force to shape the heated sample to an article. The at least two electrodes have a yield strength of at least 200 MPa, a Young's modulus that is at least 25% higher than the metallic glass sample, and an electrical resistivity that is lower than the metallic glass sample by a factor of at least 3.
Abstract:
The disclosure provides Zr—Ti—Cu—Ni—Al metallic glass-forming alloys and metallic glasses that have a high glass forming ability along with a high thermal stability of the supercooled liquid against crystallization.
Abstract:
The disclosure provides Pt—Cu—P glass-forming alloys bearing at least one of B, Ag, and Au, where each of B, Ag, and Au can contribute to improve the glass forming ability of the alloy in relation to the alloy that is free of these elements. The alloys are capable of forming metallic glass rods with diameters in excess of 3 mm, and in some embodiments 50 mm or larger. The alloys and metallic glasses can satisfy platinum jewelry hallmarks PT750, PT800, PT850, and PT900.
Abstract:
Ni—Fe, Ni—Co, and Ni—Cu-based bulk metallic glass forming alloys are provided. The alloys have critical rod diameters of at least 1 mm and in some instances at least 11 mm. The alloys have composition according to Ni(100-a-b-c-d-e)XaCrbNbcPdBe, wherein X is at least one of Fe, Co, and Cu, the atomic percent X (Fe and/or Co and/or Cu) ranges from 0.5 to 30, the atomic percent of Cr ranges from 2 to 15, the atomic percent of Nb ranges from 1 to 5, the atomic percent of P ranges from 14 to 19, the atomic percent of B ranges from 1 to 5, and the balance is Ni.
Abstract:
The disclosure provides Zr—Ti—Cu—Ni—Al metallic glass-forming alloys and metallic glasses that have a high glass forming ability along with a high thermal stability of the supercooled liquid against crystallization.
Abstract:
The disclosure provides Pt—Cu—P glass-forming alloys bearing at least one of B, Ag, and Au, where each of B, Ag, and Au can contribute to improve the glass forming ability of the alloy in relation to the alloy that is free of these elements. The alloys are capable of forming metallic glass rods with diameters in excess of 3 mm, and in some embodiments 50 mm or larger. The alloys and metallic glasses can satisfy platinum jewelry hallmarks PT750, PT800, PT850, and PT900.