摘要:
A process for selectively producing middle distillate fuel products from paraffin waxes such as slack wax and Fischer-Tropsch wax by hydroisomerizing the wax to convert 60-95 weight percent per pass of the 700.degree. F..sup.+ fraction contained in said wax. The catalyst employed is a fluorided Group VIII metal-on-alumina catalyst where the fluoride within the catalyst is present predominately as aluminum fluoride hydroxide hydrate. The preferred Group VIII metal is platinum.
摘要:
Fischer-Tropsch wax is converted to a lubricating oil having a high viscosity index and a low pour point by first hydrotreating the wax under relatively severe conditions and thereafter hydroisomerizing the hydrotreated wax in the presence of hydrogen on a particular fluorided Group VIII metal-on-alumina catalyst. The hydroisomerate is then dewaxed to produce a premium lubricating oil base stock.
摘要:
Aromatic molecules are alkylated using a silica-alumina catalyst derived from zeolite. The silica-alumina catalyst is a partially collapsed zeolite, i.e., a material of reduced crystallinity. The alkylation process which employs this material of reduced crystallinity is characterized by a high level of selectivity for the production of monoalkylated product.
摘要:
Mixtures of light and heavy waxes are fractionated by permeation through a porous membrane at temperatures just above the cloud point of the mixture with the heavier, higher melting point waxes being the component of the mixture which selectively permeates through the porous membrane.
摘要:
Straight run hydrocarbon distillate streams containing low concentrations of 2-ring aromatics can be processed to remove a high percentage of the 2-ring aromatics by contacting said stream with one side of a polyester imide membrane under pervaporation conditions to produce a permeate stream containing a very high percentage of 2-ring aromatics and a retentate stream of severely reduced 2-ring aromatic content.
摘要:
In the production of alkylaromatics by the alkylation of aromatic hydrocarbons with alkylating agents such as olefins typically in the presence of a catalyst, the unconverted aromatic hydrocarbon remaining after completion of the alkylation process is separated from the alkylaromatic product and the terminal alkylaromatic isomers are separated from the mixture of alkylaromatic isomers produced in the alkylation process by the selective permeation of the aromatic hydrocarbon and the terminal isomers through a permselective membrane, preferably an asymmetric membrane producing a permeate rich in the terminal isomers and a retentate which is lean (i.e., depleated) in the terminal isomers. Permeation is under reverse osmosis conditions, that is, under a pressure sufficient to at least overcome the osmotic pressure of the aromatic hydrocarbon present in the mixture made up of the aromatic hydrocarbon, the olefin and the mixed isomer alkylaromatic product. Permeation is carried out at a pressure of about 100 to 800 psig, preferably a pressure of about 200 to 600 psig, more preferably a pressure of about 300 to 500 psig, at a temperature of about 0.degree. to 100.degree. C., preferably about 20.degree.-80.degree. C., most preferably about 20.degree. to 50.degree. C. The membrane of choice is an asymmetric polyimide membrane.