摘要:
A method for forming a cooling hole extending from an inlet on a first surface of a wall to an outlet on a second surface of the wall includes forming a diffusing section of the cooling hole, and a trailing edge on the outlet by electrical discharge machining, and forming longitudinal lobes in the diffusing section. The metering section extends from the inlet on a first surface of the wall towards the second surface of the wall. The diffusing section extends from the outlet to one end of a metering section located between the inlet and the outlet. The outlet is substantially linear or convex at the trailing edge and the lobes are separated by longitudinal ridges.
摘要:
A method for forming a cooling hole extending from an inlet on a first surface of a wall to an outlet on a second surface of the wall includes forming a diffusing section of the cooling hole, and a trailing edge on the outlet by electrical discharge machining, and forming longitudinal lobes in the diffusing section. The metering section extends from the inlet on a first surface of the wall towards the second surface of the wall. The diffusing section extends from the outlet to one end of a metering section located between the inlet and the outlet. The outlet is substantially linear or convex at the trailing edge and the lobes are separated by longitudinal ridges.
摘要:
A gas turbine engine component includes a wall with an inner face and an outer skin. A plurality of cooling air holes extend from the inner face to the outer skin. The cooling holes include an inlet merging into a metering section, and a diffusion section downstream of the metering section, and extend to an outlet at the outer skin. The diffusion section includes a plurality of lobes. A coating layer is formed on the outer skin, with at least a portion of the plurality of lobes formed within the thermal barrier coating. A method of forming such a component is also disclosed.
摘要:
A gas turbine engine component includes a wall having first and second wall surfaces and a cooling hole extending through the wall. The cooling hole includes an inlet located at the first wall surface, an outlet located at the second wall surface and a diffusing section in communication with the inlet and extending to the outlet. The diffusing section includes a plurality of crenellation features that encourage lateral spreading of cooling air flowing through the cooling hole.
摘要:
A gas turbine engine component includes a wall having first and second wall surfaces and a cooling hole extending through the wall. The cooling hole includes an inlet located at the first wall surface, an outlet located at the second wall surface and a diffusing section in communication with the inlet and extending to the outlet. The diffusing section includes a plurality of crenellation features that encourage lateral spreading of cooling air flowing through the cooling hole.
摘要:
A gas turbine engine component includes a wall having first and second wall surfaces, a cooling hole extending through the wall and a convexity. The cooling hole includes an inlet located at the first wall surface, an outlet located at the second wall surface, a metering section extending downstream from the inlet and a diffusing section extending from the metering section to the outlet. The diffusing section includes a first lobe diverging longitudinally and laterally from the metering section and a second lobe adjacent the first lobe and diverging longitudinally and laterally from the metering section. The convexity is located near the outlet.
摘要:
A component for a gas turbine engine includes a gas path wall having a first surface and a second surface and a cooling hole extending through the gas path wall from the first surface to the second surface. The cooling hole includes an inlet portion having an inlet at the first surface, an outlet portion having an outlet at the second surface, and a transition defined between the inlet and the outlet. The inlet portion converges in a first direction from the inlet to the transition and diverges in a second direction from the inlet to the transition. The outlet portion diverges at least in one of the first and second directions from the transition to the outlet.
摘要:
An example core nacelle for a gas turbine engine includes a core cowl positioned adjacent an inner duct boundary of a fan bypass passage having an associated discharge airflow cross-sectional area. The core cowl includes at least one translating section and at least one flap section. The translating section of the core cowl is selectively moveable to vary the discharge airflow cross-sectional area.
摘要:
A rotor disk assembly for a gas turbine engine includes a rotor hub defined about an axis of rotation, the rotor hub includes a blade mount section with a first radial flange having a multiple of first apertures and a second radial flange with a multiple of second apertures.
摘要:
(A1) A turbofan engine control system is provided for managing a fan operating line. The engine (10) includes a spool having a turbine housed in a core nacelle (12). A turbofan (20) is coupled to the spool (14). A fan nacelle (34) surrounds the turbofan and core nacelle and provides a bypass flow path having a nozzle exit area (40). A controller (50) is programmed to effectively change the nozzle exit area in response to an undesired turbofan stability margin which may result in a stall or flutter condition. In one example, the physical nozzle exit area is increased at the undesired stability condition in which the airflow into the engine creates a destabilizing pressure gradient at the inlet side of the turbofan. A turbofan pressure ratio, turbofan pressure gradient, low spool speed and throttle position are monitored to determine the undesired turbofan stability margin.