Abstract:
Methods and systems for controlling vehicle lateral lane positioning are described. A computing device may be configured to identify an object in a vicinity of a vehicle on a road. The computing device may be configured to estimate, based on characteristics of the vehicle and respective characteristics of the object, an interval of time during which the vehicle will be laterally adjacent to the object. Based on the characteristics of the vehicle, the computing device may be configured to estimate longitudinal positions of the vehicle on the road during the interval of time. Based on the respective characteristics of the object, the computing device may be configured to determine a lateral distance for the vehicle to maintain between the vehicle and the object during the interval of time at the longitudinal positions of the vehicle, and provide instructions to control the vehicle based on the lateral distance.
Abstract:
Methods and systems for controlling vehicle lateral lane positioning are described. A computing device may be configured to identify an object in a vicinity of a vehicle on a road. The computing device may be configured to estimate, based on characteristics of the vehicle and respective characteristics of the object, an interval of time during which the vehicle will be laterally adjacent to the object. Based on the characteristics of the vehicle, the computing device may be configured to estimate longitudinal positions of the vehicle on the road during the interval of time. Based on the respective characteristics of the object, the computing device may be configured to determine a lateral distance for the vehicle to maintain between the vehicle and the object during the interval of time at the longitudinal positions of the vehicle, and provide instructions to control the vehicle based on the lateral distance.
Abstract:
Methods and systems for controlling vehicle lateral lane positioning are described. A computing device may be configured to identify an object in a vicinity of a vehicle on a road. The computing device may be configured to estimate, based on characteristics of the vehicle and respective characteristics of the object, an interval of time during which the vehicle will be laterally adjacent to the object. Based on the characteristics of the vehicle, the computing device may be configured to estimate longitudinal positions of the vehicle on the road during the interval of time. Based on the respective characteristics of the object, the computing device may be configured to determine a lateral distance for the vehicle to maintain between the vehicle and the object during the interval of time at the longitudinal positions of the vehicle, and provide instructions to control the vehicle based on the lateral distance.
Abstract:
Methods and systems for adaptive methods for transitioning control to the driver are described. A computing device controlling a vehicle autonomously may be configured to receive a request for a transition of the vehicle from autonomous mode to manual mode through an indication by the driver. The computing device may determine the state of the vehicle based on parameters related to the autonomous operation of the vehicle. Based on the state of the vehicle and the indication, the computing device may determine instructions corresponding to the transition of control, which may include a strategy for the transition and duration of time corresponding to the transition of control. The computing device may provide the instructions to perform the transition of control of the vehicle from autonomous mode to manual mode.
Abstract:
Disclosed are methods and devices for transitioning a mixed-mode autonomous vehicle from a human driven mode to an autonomously driven mode. Transitioning may include stopping a vehicle on a predefined landing strip and detecting a reference indicator. Based on the reference indicator, the vehicle may be able to know its exact position. Additionally, the vehicle may use the reference indictor to obtain an autonomous vehicle instruction via a URL. After the vehicle knows its precise location and has an autonomous vehicle instruction, it can operate in autonomous mode.
Abstract:
Methods and systems for adaptive methods for transitioning control to the driver are described. A computing device controlling a vehicle autonomously may be configured to receive a request for a transition of the vehicle from autonomous mode to manual mode through an indication by the driver. The computing device may determine the state of the vehicle based on parameters related to the autonomous operation of the vehicle. Based on the state of the vehicle and the indication, the computing device may determine instructions corresponding to the transition of control, which may include a strategy for the transition and duration of time corresponding to the transition of control. The computing device may provide the instructions to perform the transition of control of the vehicle from autonomous mode to manual mode.
Abstract:
Methods and systems for controlling vehicle lateral lane positioning are described. A computing device may be configured to identify an object in a vicinity of a vehicle on a road. The computing device may be configured to estimate, based on characteristics of the vehicle and respective characteristics of the object, an interval of time during which the vehicle will be laterally adjacent to the object. Based on the characteristics of the vehicle, the computing device may be configured to estimate longitudinal positions of the vehicle on the road during the interval of time. Based on the respective characteristics of the object, the computing device may be configured to determine a lateral distance for the vehicle to maintain between the vehicle and the object during the interval of time at the longitudinal positions of the vehicle, and provide instructions to control the vehicle based on the lateral distance.
Abstract:
Disclosed are methods and devices for transitioning a mixed-mode autonomous vehicle from a human driven mode to an autonomously driven mode. Transitioning may include stopping a vehicle on a predefined landing strip and detecting a reference indicator. Based on the reference indicator, the vehicle may be able to know its exact position. Additionally, the vehicle may use the reference indictor to obtain an autonomous vehicle instruction via a URL. After the vehicle knows its precise location and has an autonomous vehicle instruction, it can operate in autonomous mode.
Abstract:
Disclosed are methods and devices for transitioning a mixed-mode autonomous vehicle from a human driven mode to an autonomously driven mode. Transitioning may include stopping a vehicle on a predefined landing strip and detecting a reference indicator. Based on the reference indicator, the vehicle may be able to know its exact position. Additionally, the vehicle may use the reference indictor to obtain an autonomous vehicle instruction via a URL. After the vehicle knows its precise location and has an autonomous vehicle instruction, it can operate in autonomous mode.