摘要:
Embodiments of the disclosure provide a cross coupled position engine architecture for sensor integration in a Global Navigation Satellite System. In one embodiment, a data processing engine for processing inertial sensor data within a positioning system receiver is disclosed. The data processing engine includes a first input for receiving the sensor data, and a second input for receiving a positioning data. The data processing system also includes a memory and a processor. The processor of the data processing system is coupled to the memory and to the first and second input. The processor of the data processing system is configured to calculate a net acceleration profile data from the inertial sensor data and from the positioning data. The net acceleration profile data calculated by the processor of the data processing system is used for the Global Positioning System (GPS) receiver to subsequently calculate a position and a velocity data.
摘要:
Embodiments of the disclosure provide a cross coupled position engine architecture for sensor integration in a Global Navigation Satellite System. In one embodiment, a data processing engine for processing inertial sensor data within a positioning system receiver is disclosed. The data processing engine includes a first input for receiving the sensor data, and a second input for receiving a positioning data. The data processing system also includes a memory and a processor. The processor of the data processing system is coupled to the memory and to the first and second input. The processor of the data processing system is configured to calculate a net acceleration profile data from the inertial sensor data and from the positioning data. The net acceleration profile data calculated by the processor of the data processing system is used for the Global Positioning System (GPS) receiver to subsequently calculate a position and a velocity data.
摘要:
A personal navigation device configured to determine heading readings continuously using data from a sensor in the personal navigation device. Heading readings are selected corresponding to a periodic event. A representative heading is determined from the selected heading readings. When a portion of the selected heading readings has a value within a range of the representative heading, a static heading indicator is asserted to indicate the personal navigation device is moving in a static heading. The static heading indicator may be used to smooth an estimated trajectory of the personal navigation device.
摘要:
A personal navigation device configured to determine heading readings continuously using data from a sensor in the personal navigation device. Heading readings are selected corresponding to a periodic event. A representative heading is determined from the selected heading readings. When a portion of the selected heading readings has a value within a range of the representative heading, a static heading indicator is asserted to indicate the personal navigation device is moving in a static heading. The static heading indicator may be used to smooth an estimated trajectory of the personal navigation device.
摘要:
Embodiments of the invention provide a blending filter based on extended Kalman filter (EKF), which optimally integrates the IMU navigation data with all other satellite measurements tightly-coupled integration filter. This blending filter can be easily implemented with minor modification to the position engine of stand-alone GNSS receiver. Provided is a low-complexity tightly-coupled integration filter for sensor-assisted global navigation satellite system (GNSS) receiver. The inertial measurement unit (IMU) contains inertial sensors such as accelerometer, magnetometer, and/or gyroscopes Embodiments also include method for pedestrian dead reckoning (PDR) data conversion for ease of GNSS/PDR integration. The PDR position data is converted to user velocity measured at the time instances where GNSS position/velocity estimates are available.
摘要:
A system and method for controlling a navigation receiver is disclosed. A current position is determined using the navigation receiver and then the navigation receiver is placed in a power-save mode. The current position is updated using information from position sensors. The navigation receiver is temporarily placed in an active mode at intervals to determine an intermediate position. The current position is also updated using the intermediate position. The navigation receiver may be a GNSS receiver, a cellular receiver, a WiFi receiver, or another position-fixing device. The position sensors may be accelerometers, gyroscopes, electronic compasses or mapping data. A power-save controller controls the power-save or active mode of the navigation receiver. A sensor conditioning circuit pre-processes the data from the position sensors before providing the data to the power-save controller. During the power-save mode, an RF subsystem and/or a baseband subsystem of the navigation receiver may be turned off.
摘要:
A system (10) for pedestrian use includes an accelerometer (110) having multiple electronic sensors; an electronic circuit (100) operable to generate a signal stream representing magnitude of overall acceleration sensed by the accelerometer (110), and to electronically correlate a sliding window (520) of the signal stream with itself to produce peaks at least some of which represent walking steps, and further operable to electronically execute a periodicity check (540) to compare different step periods for similarity, and if sufficiently similar then to update (560) a portion of the circuit substantially representing a walking-step count; and an electronic display (190) responsive to the electronic circuit (100) to display information at least in part based on the step count. Other systems, electronic circuits and processes are disclosed.
摘要:
A system (10) for pedestrian use includes an accelerometer (110) having multiple electronic sensors; an electronic circuit (100) operable to generate a signal stream representing magnitude of overall acceleration sensed by the accelerometer (110), and to electronically correlate a sliding window (520) of the signal stream with itself to produce peaks at least some of which represent walking steps, and further operable to electronically execute a periodicity check (540) to compare different step periods for similarity, and if sufficiently similar then to update (560) a portion of the circuit substantially representing a walking-step count; and an electronic display (190) responsive to the electronic circuit (100) to display information at least in part based on the step count. Other systems, electronic circuits and processes are disclosed.
摘要:
Methods and systems for power and performance optimization are disclosed. In an embodiment, a method of power and performance optimization may include or comprise determining an environment condition of at least one of a current location and one or more intermediate locations along a route of a navigation system based on an environment information. The method also includes or comprises configuring one or more features associated with power and performance optimization in a navigation receiver associated with the navigation system based on the determined environment condition.
摘要:
Methods and systems for determining information about a vascular bodily lumen are described. An exemplary method includes generating an electrical signal, delivering the electrical signal to a plurality of excitation elements in the vicinity of the vascular bodily lumen, measuring a responsive electrical signal from a plurality of sensing elements in response to the delivered electrical signal, and determining a lumen dimension. Specific embodiments include generating a multiple frequency electrical signal. Another embodiment includes measuring a plurality of responsive signals at a plurality of frequencies. Still other embodiments include using spatial diversity of the excitation elements. Yet other embodiments use method for calibration and de-embedding of such measurements to determine the lumen dimensions. Diagnostic devices incorporating the method are also disclosed, including guide wires, catheters and implants. The methods and systems described herein are advantageous as they do not include injecting a second fluid for the measurements.