摘要:
An off chip driver impedance adjustment circuit includes a storage circuit adapted to receive and store a drive strength adjustment word. A counter circuit is coupled to the storage circuit to receive the drive strength adjustment word and develops a drive strength count responsive to the drive strength adjustment word. A programmable fuse code to preset the counter. An output driver circuit is coupled to the counter circuit to receive the drive strength count and is adapted to receive a data signal. The output driver circuit develops an output signal on an output responsive to the data signal and adjusts a drive strength as a function of the drive strength count.
摘要:
An off chip driver impedance adjustment circuit includes a storage circuit adapted to receive and store a drive strength adjustment word. A counter circuit is coupled to the storage circuit to receive the drive strength adjustment word and develops a drive strength count responsive to the drive strength adjustment word. A programmable fuse code to preset the counter. An output driver circuit is coupled to the counter circuit to receive the drive strength count and is adapted to receive a data signal. The output driver circuit develops an output signal on an output responsive to the data signal and adjusts a drive strength as a function of the drive strength count.
摘要:
A DRAM device includes a mode register that is programmed to select one of two modes for operating data bus terminals in the device. A timing circuit generates timing signals in synchronism with the clock signal that correspond to the selected mode. The timing signals are combined with read data signals to generate corresponding timed read data signals. These timed data signals and termination signals from the timing circuit are applied to pull-up and pull-down circuitry, which drive respective pull-up and pull-down transistors coupled to the data bus terminals. The transistors drive the data bus terminals to either a first or a second voltage if the first mode of operation is selected and to either a third or a fourth voltage if the second mode of operation is selected. Additionally, the pull-up and pull-down transistors bias the data bus terminals to respective voltages corresponding to the selected operating mode.
摘要:
An apparatus and method for selecting a storage location in a memory device including receiving at least one of a pre-decoded location address signal, a match signal, and a redundant location address enable signal, enabling one of a decoder and a redundant decoder in response to the match signal, wherein the decoder is operable to generate a location select signal for selecting a first location, the decoder being responsive to the pre-decoded location address signal, and wherein the redundant decoder is operable to generate a redundant location select signal for selecting a second location, the redundant decoder being responsive to the redundant location address enable signal, and terminating one of the generation of a location select signal and the generation of a redundant location select signal in response to a precharge signal.
摘要:
The present invention provides a clock signal input circuit that is able to provide inverse internal clock signals generated by the same input buffer as the address and data signals which exhibit reduced skew. When a skewed external noninverse clock signal and a corresponding external inverse clock signal are passed through respective reference voltage input buffers there is no reduction in skew between the two internal signals. In a preferred embodiment, the invention provides back to back inverters connected to both lines carrying the noninverted and inverted internal clock signals. The slower internal clock signal has an extra inverter driving it when it switches states and the faster internal clock signal has an extra inverter fighting it when it switches states. The skew of the two signals is reduced, allowing for faster operation of the integrated circuit and a reduction in misread data signals.
摘要:
An apparatus and method for selecting a storage location in a memory device including receiving at least one of a pre-decoded location address signal, a match signal, and a redundant location address enable signal, enabling one of a decoder and a redundant decoder in response to the match signal, wherein the decoder is operable to generate a location select signal for selecting a first location, the decoder being responsive to the pre-decoded location address signal, and wherein the redundant decoder is operable to generate a redundant location select signal for selecting a second location, the redundant decoder being responsive to the redundant location address enable signal, and terminating one of the generation of a location select signal and the generation of a redundant location select signal in response to a precharge signal.
摘要:
A DRAM device includes a mode register that is programmed to select one of two modes for operating data bus terminals in the device. A timing circuit generates timing signals in synchronism with the clock signal that correspond to the selected mode. The timing signals are combined with read data signals to generate corresponding timed read data signals. These timed data signals and termination signals from the timing circuit are applied to pull-up and pull-down circuitry, which drive respective pull-up and pull-down transistors coupled to the data bus terminals. The transistors drive the data bus terminals to either a first or a second voltage if the first mode of operation is selected and to either a third or a fourth voltage if the second mode of operation is selected. Additionally, the pull-up and pull-down transistors bias the data bus terminals to respective voltages corresponding to the selected operating mode.
摘要:
A DRAM device includes a mode register that is programmed to select one of two modes for operating data bus terminals in the device. A timing circuit generates timing signals in synchronism with the clock signal that correspond to the selected mode. The timing signals are combined with read data signals to generate corresponding timed read data signals. These timed data signals and termination signals from the timing circuit are applied to pull-up and pull-down circuitry, which drive respective pull-up and pull-down transistors coupled to the data bus terminals. The transistors drive the data bus terminals to either a first or a second voltage if the first mode of operation is selected and to either a third or a fourth voltage if the second mode of operation is selected. Additionally, the pull-up and pull-down transistors bias the data bus terminals to respective voltages corresponding to the selected operating mode.
摘要:
An apparatus and method for selecting a storage location in a memory device including receiving at least one of a pre-decoded location address signal, a match signal, and a redundant location address enable signal, enabling one of a decoder and a redundant decoder in response to the match signal, wherein the decoder is operable to generate a location select signal for selecting a first location, the decoder being responsive to the pre-decoded location address signal, and wherein the redundant decoder is operable to generate a redundant location select signal for selecting a second location, the redundant decoder being responsive to the redundant location address enable signal, and terminating one of the generation of a location select signal and the generation of a redundant location select signal in response to a precharge signal.
摘要:
Disclosed herein are exemplary embodiments of an improved write address shift register structure useful for example in a DDR3 DRAM having read/write latency. The disclosed shift register structure propagates write addresses from an address bus outside the device to array decoders to allow latent data to be written into the cells in the memory array at a proper time. The register structure comprises a reduced number of registers (e.g., four) thus eliminating the need for extraneous registers which might otherwise be used to propagate “don't care” addresses. The registers are clocked, and the addresses propagated though the registers, in accordance with a latency bus through which a user defines the desired read/write latency in accordance with user preferences and the desired clock speed of the device. The clock for each register is preferably decoded from the latency bus and hence each register preferably has its own unique clock.