摘要:
The invention relates to a gas discharge lamp for EUV radiation with an anode (1) and a hollow cathode (2), wherein the hollow cathode (2) has at least two openings (3, 3′) and the anode (1) has a through hole (4), which is characterized in that the longitudinal axes (5, 5′) of the hollow cathode openings (3) have a common point of intersection S lying on the axis of symmetry (6) of the anode opening (4).
摘要:
The invention relates to a gas discharge lamp for EUV radiation with an anode (1) and a hollow cathode (2), wherein the hollow cathode (2) has at least two openings (3, 3′) and the anode (1) has a through hole (4), which is characterized in that the longitudinal axes (5, 5′) of the hollow cathode openings (3) have a common point of intersection S lying on the axis of symmetry (6) of the anode opening (4).
摘要:
In a method for generating extreme ultraviolet radiation or soft x-ray radiation by means of gas discharge, in particular, for EUV lithography, a discharge vessel is provided with two electrodes that are connected to high voltage. Between the electrodes, in an area of two electrode recesses that are coaxial to one another, a gas fill with predetermined gas pressure in accordance with a discharge operation realized on the left branch of the Paschen curve is provided. In this area, a plasma emitting the radiation is generated when supplying energy. The plasma is displaced or deformed by a pressure change of the gas fill in the area of the electrode recesses.
摘要:
In a method for generating extreme ultraviolet radiation or soft x-ray radiation by means of gas discharge, in particular, for EUV lithography, a discharge vessel is provided with two electrodes that are connected to high voltage. Between the electrodes, in an area of two electrode recesses that are coaxial to one another, a gas fill with predetermined gas pressure in accordance with a discharge operation realized on the left branch of the Paschen curve is provided. In this area, a plasma emitting the radiation is generated when supplying energy. The plasma is displaced or deformed by a pressure change of the gas fill in the area of the electrode recesses.
摘要:
A method for generating extreme ultraviolet radiation and soft x-ray radiation with a gas discharge operated on the left branch of the Paschen curve, in particular, for EUV lithography,wherein a discharge chamber (10) of a predetermined gas pressure and two electrodes (11, 12) are used, wherein the electrodes have an opening (14, 15), respectively, positioned on the same symmetry axis (13) and, in the course of a voltage increase (16) upon reaching a predetermined ignition voltage (Uz), generate a plasma (17) located in the area between their openings (14, 15), which plasma is a source of the radiation (17′) to be generated, wherein an ignition of the plasma (17) is realized by affecting the gas pressure and/or by triggering, and wherein, with the ignition of the plasma (17), an energy storage device supplies by means of the electrodes (11, 12) stored energy into the plasma (17), characterized in that the ignition of the plasma (17) is realized by using a predetermined ignition delay (18).
摘要:
The invention relates to a method and a device for the generation of a plasma through electric discharge in a discharge space which contains at least two electrodes, at least one of which is constructed from a matrix material or carrier material, such that an erosion-susceptible region with an evaporation spot is formed at least by the current flow. To present a method or a device for the generation of a plasma by electric discharge, it is suggested that a sacrificial substrate (38) is provided at least at the evaporation spot, the boiling point of said sacrificial suvstrate (38) during discharge operation lying below the melting point of the carrier material (30), such that charge carriers arising in the current flow are mainly generated from the sacrificial substrate (38).
摘要:
A method of producing extreme ultraviolet radiation (EUV) or soft X-ray radiation by means of an electrically operated discharge, in particular for EUV lithography or for metrology, in which a plasma (22) is ignited in a gaseous medium between at least two electrodes (14, 16) in a discharge space (12), said plasma emitting said radiation that is to be produced. The gaseous medium is produced from a metal melt (24), which is applied to a surface in said discharge space (12) and at least partially evaporated by an energy beam, in particular by a laser beam (20).
摘要:
The invention relates to a method and a device for the generation of a plasma through electric discharge in a discharge space which contains at least two electrodes, at least one of which is constructed from a matrix material or carrier material, such that an erosion-susceptible region with an evaporation spot is formed at least by the current flow. To present a method or a device for the generation of a plasma by electric discharge, it is suggested that a sacrificial substrate (38) is provided at least at the evaporation spot, the boiling point of said lying below the melting point of the carrier material (30), such that charge carriers arising in the current flow are mainly generated from the sacrificial substrate (38).
摘要:
A method of producing extreme ultraviolet radiation (EUV) or soft X-ray radiation by means of an electrically operated discharge, in particular for EUV lithography or for metrology, in which a plasma (22) is ignited in a gaseous medium between at least two electrodes (14, 16) in a discharge space (12), said plasma emitting said radiation that is to be produced. The gaseous medium is produced from a metal melt (24), which is applied to a surface in said discharge space (12) and at least partially evaporated by an energy beam, in particular by a laser beam (20).
摘要:
A method and a device for generating extreme ultraviolet (EUV) and soft x-ray radiation from a gas discharge. The device has at least two electrodes each having a flush opening by which an axis of symmetry is defined, in which an intermediate space with a wide spatial homogenous gas filling between anode and cathode is provided. The electrodes are formed in such a way, that the gas discharge is formed exclusively in the volume defined by the flush openings. The current pulses with respect to amplitude and period duration are selected in such a way that a dense hot plasma channel is formed on the axis of symmetry, the plasma being the source of EUV and/or soft x-ray radiation. The preferred area of application is the EUV projection lithography in the spectral range around 13 nm.