Abstract:
A situation display system has a movable section for attachment to a helmetnd a stationary section, including a stationary map providing a real map background for showing situation display elements on the map. The movable section is connected through a flexible cable to a device for the remote control of the situation display elements which are computer generated. By accurate measurements of the location of the helmet and its distance to the map, signals are provided which are processed independently of any movements of an operator wearing the helmet so that the elements are correctly displayed and seen on the map. Thus, a tactical situation display is obtained for a military command system.
Abstract:
A CO.sub.2 laser wave guide, which is excitable by a high frequency signal,as two boron nitride bodies (11a, 11b; 111a, 111b) which are held in position in a housing (10) by a specially shaped spring (14, 114) which presses the boron nitride bodies against the inner surface (10a) of the housing for good heat transfer and dissipation. A spacer (18) holds the boron nitride bodies apart to provide a gap (15) in which one electrode is held. The specially shaped spring operates, in addition to holding the boron nitride bodies in place, as the opposite electrode. This structure requires few parts and these parts do not have to meet high tolerance requirements, nor is it necessary to provide a high surface finish for the individual components.
Abstract:
The present remote data monitoring system employs a laser and a modulated retroreflector for the remote data monitoring of hard to access spaces, targets etc., in combination with an arrangement for a simultaneous friend-or-foe identification, and in combination with devices for the protection against detection and against interrogation of a friend by an enemy laser. In this system, a liquid crystal modulator of special construction depending on the purpose and structure of the system, is arranged in front of a retroreflector and modulated by the respective information. The information is interrogated by a spatially distant laser station by directing a laser beam onto the retromodulator, whereby the information is retroreflected and simultaneously modulated.
Abstract:
The invention is directed to an arrangement for protection of active armor against attack by sensor guided armor piercing projectiles, preferably with twin shaped charges, wherein inflatable individual segments are arranged at the object to be protected so as to be pressure- and temperature regulated.
Abstract:
Laser weapon system whose laser device is a target reconnaissance system with a visual device, rangefinding and exposure measuring devices, and a control computer for adjusting the laser energy, with the laser device being associated with a beam-aiming unit and with the viewer being associated with a monitor as well as an image processing unit provided with a marking and tracking device for the target individuals.
Abstract:
The optical-fiber reference-value transmitter comprises an optical waveguide coil with at least one winding layer, within which the sections of the optical waveguide fiber between adjacent turns are of equal length. A pressure finger which is connected to a mechanical distance pickup is guided over the layer of the winding and in the process exerts a mechanical pressure on a comparatively narrow zone of the optical waveguide fiber of a turn, whereby a so-called microbending effect is generated in the waveguide fiber. An opto-electronic transmitting and receiving apparatus which is connected to the optical waveguide fiber determines the location of the pressure point caused by the pressure finger and thereby, the position of the pressure finger.
Abstract:
The present optical element for an astable laser resonator includes a subate of a material which is transparent to the respective laser radiation. In manufacturing the present optical element the substrate is ground and polished on both surfaces and a template or mask is secured to one surface of the substrate. The mask has a mathematically computed boundary configuration which provides a diffraction limited divergence for the finished optical element. In the areas not covered by the mask a highly reflective coating is applied, for example, by vapor deposition. The substrate area which is not covered by the highly reflective coating remains transparent to the laser radiation. Thus, the element is useful as the reflector and/or as a lens in an astable laser resonator.
Abstract:
In a laser gyroscope it is desirable for precision operation to eliminate or effectively compensate temperature variations, as well as manufacturing tolerances. To this end the present laser gyroscope has two ring lasers physically arranged so close to each other that there is an optimal thermic contact between the two ring lasers. Temperature sensors are arranged in contact with the resonator circumference to control a piezoelectric resonator tuning device in response to temperature variations to compensate the same. The modulators of the lasers are periodically switched, for example, with the aid of Faraday cells to reverse the travel direction of the travelling waves to thereby compensate for manufacturing tolerances, and any remaining temperature variations.
Abstract:
A process for the adaptive beam control of medium-energy laser weapons for fighting electro-optical sensors and windows, wherein the behavior of the laser power reflected from a bright spot of the target and measured by a thermal image apparatus during increasing irradiation intensity is analyzed during a phase of measurement. The laser power to be emitted that will lead to the desired laser beam diameter or to the highest possible laser intensity at the target during the subsequent phase of fighting is then derived by calculation from this as well as other parameters influencing the thermal beam expansion. It is thus made possible that the laser does not always have to be operated with the maximum power, but only with the currently needed power during the phase of fighting, so that a saving is achieved in the consumption of primary laser energy. One example is explained.
Abstract:
A weapons system/device is provided for a dazzling laser with directed laser radiation with a laser operating in the visible range. This is integrated in a rifle-like carrier with an aiming device, range finder, and a portable power supply unit. The laser is adjustable in terms of beam divergence, energy to be emitted, and irradiation time. A control computer is provided for entering target reconnaissance parameters, as well as measuring instruments for determining these parameters with respect to a target subject and the environment. The controls/instrumentation are associated with the laser, wherein the control computer calculates the laser parameters (beam divergence, single pulse or pulse train, pulse energy and pulse count of the pulsed laser) necessary for the reversible dazzling of the eye on the basis of the target reconnaissance parameters entered, and it automatically presets and regulates the resulting laser power and the exposure time of the continuous laser.