摘要:
A transistor and a transistor fabrication method for forming an LDD structure in which the n-type dopants associated with an n-channel transistor are formed prior to the formation of the p-type dopants is presented. The n-type source/drain and LDD implants generally require higher activation energy (thermal anneal) than the p-type source/drain and LDD implants. The n-type arsenic source/drain implant, which has the lowest diffusivity and requires the highest temperature anneal, is performed first in the LDD process formation. Performing such a high temperature anneal first ensures minimum additional migration of subsequent, more mobile implants. Mobile implants associated with lighter and less dense implant species are prevalent in LDD areas near the channel perimeter. The likelihood of those implants moving into the channel is lessened by tailoring subsequent anneal steps to temperatures less than the source/drain anneal step.
摘要:
An IGFET with metal spacers is disclosed. The IGFET includes a gate electrode on a gate insulator on a semiconductor substrate. Sidewall insulators are adjacent to opposing vertical edges of the gate electrode, and metal spacers are formed on the substrate and adjacent to the sidewall insulators. The metal spacers are electrically isolated from the gate electrode but contact portions of the drain and the source. Preferably, the metal spacers are adjacent to edges of the gate insulator beneath the sidewall insulators. The metal spacers are formed by depositing a metal layer over the substrate then applying an anisotropic etch. In one embodiment, the metal spacers contact lightly and heavily doped drain and source regions, thereby increasing the conductivity between the heavily doped drain and source regions and the channel underlying the gate electrode. The metal spacers can also provide low resistance drain and source contacts.
摘要:
An optical monitoring of electrical characteristics of devices in a semiconductor is performed during an anneal step to detect the time annealing is complete and activation occurs. A surface photovoltage measurement is made during annealing to monitor the charge state on the surface of a substrate wafer to determine when the substrate is fully annealed. The surface photovoltage measurement is monitored, the time of annealing is detected, and a selected over-anneal is controlled. The surface photovoltage (SPV) measurement is performed to determine a point at which a dopant or impurity such as boron or phosphorus is annealed in a silicon lattice. In some embodiments, the point of detection is used as a feedback signal in an RTA annealing system to adjust a bank of annealing lamps for annealing and activation uniformity control. The point of detection is also used to terminate the annealing process to minimize D.sub.t.
摘要:
An interlevel interconnect is formed in a window opened through an isolation layer and through an etch barrier to expose an electrode surface and an adjacent isolation barrier. The interlevel interconnect may be disposed on substantially all of a portion of the underlying electrode such as an insulated gate field effect transistor (IGFET) source/drain region surface. The etch barrier provides controlled etching to allow for overlap of the interlevel interconnect onto the isolation barrier without increased parasitic capacitance relative to conventional contact misalignments. Furthermore, allaying concerns of overlapping allows for increased utilization of source/drain region surface area by the interlevel interconnect. Furthermore, the etch barrier allows the interlevel interconnect to strap electrodes of a plurality of circuit devices while exhibiting nominal if any substrate to interlevel interconnect leakage currents.
摘要:
A transistor and a transistor fabrication method are presented where a sequence of spacers are formed and partially removed upon sidewall surfaces of the gate conductor to produce a graded junction having a relatively smooth doping profile. The spacers include removable and non-removable structures formed on the sidewall surfaces. The adjacent structures have dissimilar etch characteristics compared to each other and compared to the gate conductor. A first dopant (MDD dopant) and a second dopant (source/drain dopant) are implanted into the semiconductor substrate after the respective formation of the removable structure and the non-removable structure. A third dopant (LDD dopant) is implanted into the semiconductor substrate after the removable layer is removed from between the gate conductor and the non-removable structure (spacer). As a result a graded junction is created having higher concentration regions formed outside of lightly concentration regions, relative to the channel area. Such a doping profile provides superior protection against the hot-carrier effect compared to the traditional LDD structure. The smoother the doping profile, the more gradual the voltage drop across the channel/drain junction. A more gradual voltage drop gives rise to a smaller electric field and reduces the hot-carrier effect. Furthermore, the MDD and source/drain implants are performed first, prior to the LDD implant. This allows high-temperature thermal anneals to be performed first, followed by lower temperature anneals second.
摘要:
A local interconnect (LI) structure is formed by forming a silicide layer in selected regions of a semiconductor structure then depositing an essentially uniform layer of transition or refractory metal overlying the semiconductor structure. The metal local interconnect is deposited without forming in intermediate insulating layer between the silicide and metal layers to define contact openings or vias. In some embodiments, titanium a suitable metal for formation of the local interconnect. Suitable selected regions for silicide layer formation include, for example, silicided source/drain (S/D) regions and silicided gate contact regions. The silicided regions form uniform structures for electrical coupling to underlying doped regions that are parts of one or more semiconductor devices. In integrated circuits in which an etchstop layer is desired for the patterning of the metal film, a first optional insulating layer is deposited prior to deposition of the metal film. In one example, the insulating layer is a silicon dioxide (oxide) layer that is typically less than 10 nm in thickness.
摘要:
A semiconductor integrated circuit with a transistor formed within an active area defined by side-walls of a shallow trench isolation region, and method of fabrication thereof, is described. A gate electrode is formed over a portion of the active area and LDD regions formed that are self-aligned to both the gate electrode and the trench side-walls. A dielectric spacer is formed adjacent the gate electrode and extending to the trench side-walls. In this manner, the spacers essentially cover the LDD regions. Source and drain regions are formed that are adjacent the trench side-walls wherein the spacer serves to protect at least a portion of the LDD regions to maintain a spacing of the S/D regions from the gate electrode edge. In this manner an advantageously lowered E.sub.M provided by LDD regions is maintained. In some embodiments of the present invention, S/D regions are formed by implantation through the trench side-walls.
摘要:
A method of making an IGFET with a selectively doped multilevel polysilicon gate that includes upper and lower polysilicon gate levels is disclosed. The method includes providing a semiconductor substrate with an active region, forming a gate insulator on the active region, forming a a lower polysilicon layer on the gate insulator, forming a first masking layer over the lower polysilicon layer, etching the lower polysilicon layer through openings in the first masking layer using the first masking layer as an etch mask for a portion of the lower polysilicon layer that forms the lower polysilicon gate level over the active region, removing the first masking layer, forming the upper polysilicon gate level on the lower polysilicon gate level after removing the first masking layer, introducing a dopant into the upper polysilicon gate level without introducing the dopant into the substrate, diffusing the dopant from the upper polysilicon gate level into the lower polysilicon gate level, and forming a source and drain in the active region. Advantageously, the lower polysilicon gate level has both an accurately defined length to provide the desired channel length and a well-controlled doping concentration to provide the desired threshold voltage.
摘要:
A method of making N-channel and P-channel IGFETs is disclosed. The method includes, in sequence, the steps of partially doping a first source and a first drain in a first active region of a semiconductor substrate, applying a first tube anneal while a second active region of the semiconductor substrate is devoid of source/drain doping, partially doping a second source and a second drain in the second active region, applying a second tube anneal, fully doping the first source and the first drain, applying a first rapid thermal anneal, fully doping the second source and the second drain, and applying a second rapid thermal anneal. Advantageously, the first and second tube anneals provide control over the channel junction locations, and the first and second rapid thermal anneals provide rapid drive-in for subsequent source/drain doping spaced from the channel junctions.
摘要:
An integrated circuit is formed whereby junction of NMOS transistors are formed dissimilar to junctions of PMOS transistors. The NMOS transistors include an LDD area, an MDD area and a heavy concentration source/drain area. Conversely, the PMOS transistor include an LDD area and a source/drain area. The NMOS transistor junction is formed dissimilar from the PMOS transistor junction to take into account the less mobile nature of the junction dopants relative to the PMOS dopants. Thus, a lessening of the LDD area and the inclusion of an MDD area provide lower source/drain resistance and higher ohmic connectivity in the NMOS device. The PMOS junction includes a relatively large LDD area so as to draw the highly mobile, heavy concentration boron atoms away from the PMOS channel.