摘要:
A system for limiting the size of a local storage of a processor is provided. A facility is provided in association with a processor for setting a local storage size limit. This facility is a privileged facility and can only be accessed by the operating system running on a control processor in the multiprocessor system or the associated processor itself. The operating system sets the value stored in the local storage limit register when the operating system initializes a context switch in the processor. When the processor accesses the local storage using a request address, the local storage address corresponding to the request address is compared against the local storage limit size value in order to determine if the local storage address, or a modulo of the local storage address, is used to access the local storage.
摘要:
A system for limiting the size of a local storage of a processor is provided. A facility is provided in association with a processor for setting a local storage size limit. This facility is a privileged facility and can only be accessed by the operating system running on a control processor in the multiprocessor system or the associated processor itself. The operating system sets the value stored in the local storage limit register when the operating system initializes a context switch in the processor. When the processor accesses the local storage using a request address, the local storage address corresponding to the request address is compared against the local storage limit size value in order to determine if the local storage address, or a modulo of the local storage address, is used to access the local storage.
摘要:
A method for limiting the size of a local storage of a processor is provided. A facility is provided in association with a processor for setting a local storage size limit. This facility is a privileged facility and can only be accessed by the operating system running on a control processor in the multiprocessor system or the associated processor itself The operating system sets the value stored in the local storage limit register when the operating system initializes a context switch in the processor. When the processor accesses the local storage using a request address, the local storage address corresponding to the request address is compared against the 1ocal storage limit size value in order to determine if the local storage address, or a modulo of the local storage address, is used to access the local storage.
摘要:
A system comprises a memory module configured to store signed page table data and a selected processing element coupled to the memory module. The selected processing element is one of a plurality of processing elements, which together comprise a portion of a multiprocessor system. The selected processing element is configured to authenticate page table management code and, based on authenticated page table management code, to sign page table data that is subsequently stored in the memory module, and to verify signed page table data that is read from the memory module.
摘要:
A design structure for a processor system may be embodied in a machine readable medium for designing, manufacturing or testing a processor integrated circuit. The design structure may embody a processor system that integrates error correcting code (ECC) detection and correction hardware within an memory management circuit. The design structure may specify ECC hardware circuitry that provides detection, correction and generation of ECC data bits in conjunction with memory data read and writes. The design structure for the processor system may permit the detection and correction of soft single bit errors read from local memory in-line while using read modify write DMA circuit logic to correct local memory data. The design structure may provide for local memory data error detection and correction in a background memory scrub process without the need for additional in-line data logic.
摘要:
Mechanisms are provided for performing approximate run-ahead computations. A first group of compute engines is selected to execute full computations on a full set of input data. A second group of compute engines is selected to execute computations on a sampled subset of the input data. A third group of compute engines is selected to compute a difference in computation results between first computation results generated by the first group of compute engines and second computation results generated by the second group of compute engines. The second group of compute engines is reconfigured based on the difference generated by the third group of compute engines.
摘要:
Mechanisms are provided for performing approximate run-ahead computations. A first group of compute engines is selected to execute full computations on a full set of input data. A second group of compute engines is selected to execute computations on a sampled subset of the input data. A third group of compute engines is selected to compute a difference in computation results between first computation results generated by the first group of compute engines and second computation results generated by the second group of compute engines. The second group of compute engines is reconfigured based on the difference generated by the third group of compute engines.
摘要:
Mechanisms are provided for performing approximate run-ahead computations. A first group of compute engines is selected to execute full computations on a full set of input data. A second group of compute engines is selected to execute computations on a sampled subset of the input data. A third group of compute engines is selected to compute a difference in computation results between first computation results generated by the first group of compute engines and second computation results generated by the second group of compute engines. The second group of compute engines is reconfigured based on the difference generated by the third group of compute engines.
摘要:
An apparatus is provided for using multiple thread contexts to improve processing performance of a single thread. When an exceptional instruction is encountered, the exceptional instruction and any predicted instructions are reloaded into a buffer of a first thread context. A state of the register file at the time of encountering the exceptional instruction is maintained in a register file of the first thread context. The instructions in the pipeline are executed speculatively using a second register file in a second thread context. During speculative execution, cache misses may cause loading of data to the cache may be performed. Results of the speculative execution are written to the second register file. When a stopping condition is met, contents of the first register file are copied to the second register file and the reloaded instructions are released to the execution pipeline.
摘要:
A mechanism for securely and dynamically reconfiguring reconfigurable logic is provided. A state machine within a data processing system establishes a hardware boundary to the reconfigurable logic within the data processing system thereby forming isolated reconfigurable logic. The state machine clears any prior state existing within the isolated reconfigurable logic. The state machine authenticates a new configuration to be loaded into the isolated reconfigurable logic. The state machine determines whether the authentication of the new configuration is successful. Responsive to the authentication of the new configuration being successful, the state machine loads the new configuration into the isolated reconfigurable logic. The state machine then starts operation of the isolated reconfigurable logic.