Abstract:
A system includes a light source and a nonlinear converter optically coupled to and remote from the light source. The nonlinear light converter converts a light pulse received from the light source to a broadened or spectrum-shifted light pulse. The system also includes a sensor in situ with the nonlinear light converter. The sensor performs a sense operation based on the broadened or spectrum-shifted light pulse and generates an electrical signal corresponding to the sense operation. The system also includes an electro-optical interface in situ with the sensor that transforms the electrical signal to an optical signal for conveyance to a signal collection interface.
Abstract:
The presence of organosulfur compounds in a substance may make analyses of the substance difficult, particularly in the presence of interfering compounds. Methods for analyzing a substance may comprise: providing a substance comprising an organosulfur compound; optically interacting electromagnetic radiation with the substance and an integrated computational element; and analyzing for the organosulfur compound in the substance using the integrated computational element.
Abstract:
A system can include a filter assembly with a filter and a substance in the filter assembly, and at least one optical computing device having an integrated computational element which receives electromagnetic radiation from the substance. A method can include receiving electromagnetic radiation from a substance in a filter assembly, the electromagnetic radiation from the substance being received by at least one optical computing device having an integrated computational element, and the receiving being performed while a filter is positioned in the filter assembly. A detector may receive electromagnetic radiation from the integrated computational element and produce an output correlated to a characteristic of the substance. A mitigation technique may be selected, based on the detector output.
Abstract:
A system can include a filter assembly with a filter and a substance in the filter assembly, and at least one optical computing device having an integrated computational element which receives electromagnetic radiation from the substance. A method can include receiving electromagnetic radiation from a substance in a filter assembly, the electromagnetic radiation from the substance being received by at least one optical computing device having an integrated computational element, and the receiving being performed while a filter is positioned in the filter assembly. A detector may receive electromagnetic radiation from the integrated computational element and produce an output correlated to a characteristic of the substance. A mitigation technique may be selected, based on the detector output.
Abstract:
An optical computing device adapted to compensate for the effects of light intensity fluctuation through the use of optical elements that generate a normalization optical channel (or B Channel) having a light intensity that is substantially equal to the light intensity of the characteristic optical channel (or A Channel). As a result, highly accurate normalizations are obtained which give rise to the most accurate results from the optical computing device.
Abstract:
Various implementations of optical computing devices are described herein which include a “tuning fork” probe, “spark plug” probe, “grooved tubular” and “modular” type implementation.
Abstract:
An optical computing device having a redundant light source and/or a plurality of optical elements (i.e., optical train) in order to simultaneously determine characteristics of a sample in real-time by deriving the characteristic data from the output of the optical elements.
Abstract:
Various implementations of optical computing devices are described herein which include a “tuning fork” probe, “spark plug” probe, “grooved tubular” and “modular” type implementation.
Abstract:
The presence of organosulfur compounds in a substance may make analyses of the substance difficult, particularly in the presence of interfering compounds. Methods for analyzing a substance may comprise: providing a substance comprising an organosulfur compound; optically interacting electromagnetic radiation with the substance and an integrated computational element; and analyzing for the organosulfur compound in the substance using the integrated computational element.
Abstract:
Various molecular characteristics of a polymer may be determined using an integrated computational element to assay the polymer. Methods for assaying a polymer can comprise optically interacting electromagnetic radiation with a polymer and an integrated computational element; and determining a molecular characteristic of the polymer, using the integrated computational element. The molecular characteristic of the polymer may be used to determine a bulk characteristic of a fluid phase in which the polymer may be disposed.