Abstract:
Provided in one example herein is a liquid electrophotographic ink composition, comprising: a carrier fluid comprising a polymer; ink particles comprising pigment particles and a polymeric resin, the pigment particles comprising titanium dioxide Sand being distributed in the polymeric resin; and a charge director, wherein the ink particles have an average diameter of between about 10 μm and 50 μm; and the pigment particles are between about 10 wt % and about 50 wt % of the ink particles. Methods of making and using the ink composition are also provided.
Abstract:
A method of making a liquid electrophotographic (LEP) paste is disclosed herein. A base paste is made by forming a dispersion of a pigment and a non-polar carrier, adding a transparent resin dispersion to the pigment dispersion to form a dispersion mixture, and homogenizing the dispersion mixture. The transparent resin dispersion includes a polymer dispersed in a non-aqueous carrier. The homogenizing may be accomplished by agitating the dispersion mixture at a frequency of less than 1 kHz, thereby forming the paste.
Abstract:
A method of making a liquid electrophotographic (LEP) paste is disclosed herein. A base paste is made by forming a dispersion of a pigment and a non-polar carrier, adding a transparent resin dispersion to the pigment dispersion to form a dispersion mixture, and homogenizing the dispersion mixture. The transparent resin dispersion includes a polymer dispersed in a non-aqueous carrier. The homogenizing may be accomplished by agitating the dispersion mixture at a frequency of less than 1 kHz, thereby forming the paste.
Abstract:
A method for forming a system including polymer-encapsulated nanoparticles includes forming an inverse mini-emulsion including a continuous phase of a non-aqueous medium and a discontinuous phase of at least: a plurality of nanoparticles having a polar surface, and at least one of i) a polar, water-soluble, or water-miscible monomer, or ii) a polar, water-soluble, or water-miscible pre-polymer. The method further includes initiating polymerization of the at least one of the monomer or the prepolymer to form a polymer coating on each of the plurality of nanoparticles in the non-aqueous medium.
Abstract:
Provided in one example herein is a liquid electrophotographic ink composition, comprising: a carrier fluid comprising a polymer; ink particles comprising pigment particles and a polymeric resin, the pigment particles comprising titanium dioxide and being distributed in the polymeric resin; and a charge director, wherein the ink particles have an average diameter of between about 10 μm and 50 μm; and the pigment particles are between about 10 wt % and about 50 wt % of the ink particles. Methods of making and using the ink composition are also provided.
Abstract:
A concentrated inkjet ink for packaging includes a liquid composition present in an amount that is less than 60 wt % of the concentrated inkjet ink, and nonvolatile solids present in an amount ranging from about 40 wt % to about 90 wt % of the concentrated inkjet ink. The nonvolatile solids include encapsulated pigment particles having a particle size ranging from about 50 nm to about 500 nm, and a dispersant. The concentrated inkjet ink is dispersible in an ink vehicle to form a print ready inkjet ink.
Abstract:
A liquid electrophotographic ink concentrate includes non-volatile solids present in an amount ranging from about 20% to about 70% of the ink concentrate, the non-volatile solids including encapsulated pigment particles having a particle size ranging from about 500 nm to about 20 μm, and a viscosity modifier. The ink concentrate includes a balance of a liquid composition, the liquid composition including a carrier. The concentrate is dispersible in an ink vehicle to form a print-ready liquid electrophotographic ink having the non-volatile solids present in an amount ranging from about 0.5% to 5% of the print-ready liquid electrophotographic ink.
Abstract:
A method for forming a system including polymer-encapsulated nanoparticles includes forming an inverse mini-emulsion including a continuous phase of a non-aqueous medium and a discontinuous phase of at least: a plurality of nanoparticles having a polar surface, and at least one of i) a polar, water-soluble, or water-miscible monomer, or ii) a polar, water-soluble, or water-miscible pre-polymer. The method further includes initiating polymerization of the at least one of the monomer or the prepolymer to form a polymer coating on each of the plurality of nanoparticles in the non-aqueous medium.
Abstract:
A liquid electrophotographic ink concentrate includes non-volatile solids present in an amount ranging from about 20% to about 70% of the ink concentrate, the non-volatile solids including encapsulated pigment particles having a particle size ranging from about 500 nm to about 20 μm, and a viscosity modifier. The ink concentrate includes a balance of a liquid composition, the liquid composition including a carrier. The concentrate is dispersible in an ink vehicle to form a print-ready liquid electrophotographic ink having the non-volatile solids present in an amount ranging from about 0.5% to 5% of the print-ready liquid electrophotographic ink.
Abstract:
A concentrated inkjet ink for packaging includes a liquid composition present in an amount that is less than 60 wt % of the concentrated inkjet ink, and nonvolatile solids present in an amount ranging from about 40 wt % to about 90 wt % of the concentrated inkjet ink. The nonvolatile solids include encapsulated pigment particles having a particle size ranging from about 50 nm to about 500 nm, and a dispersant. The concentrated inkjet ink is dispersible in an ink vehicle to form a print ready inkjet ink.