Abstract:
A system and method for additive manufacturing (AM) including forming a product via AM, placing a resonator adjacent the product as the product is being formed in the AM, and determining a property of the product. The resonator operates over a microwave frequency spectrum and emanates electromagnetic energy.
Abstract:
The present disclosure is drawn to amorphous thin metal films and associated methods. Generally, an amorphous thin metal film can comprise a combination of three metals or metalloids including: 5 at % to 90 at % of a metalloid selected from the group of carbon, silicon, and boron; 5 at % to 90 at % of a first metal selected from the group of titanium, vanadium, chromium, cobalt, nickel, zirconium, niobium, molybdenum, rhodium, palladium, hafnium, tantalum, tungsten, iridium, and platinum; and 5 at % to 90 at % of a second metal selected from the group of titanium, vanadium, chromium, cobalt, nickel, zirconium, niobium, molybdenum, rhodium, palladium, hafnium, tantalum, tungsten, iridium, and platinum, wherein the second metal is different than the first metal. Typically, the three elements account for at least 70 at % of the amorphous thin metal film.
Abstract:
A three-dimensional printing kit can include a polymeric build material and a fusing agent. The polymeric build material can include polymer particles having a D50 particle size from about 2 μm to about 150 μm. The fusing agent can include an aqueous liquid vehicle including water and an organic co-solvent, a radiation absorber to generate heat from absorbed electromagnetic radiation, and from about 2 wt % to about 15 wt % of a carbamide-containing compound.
Abstract:
The present disclosure is drawn to a thermal inkjet printhead stack with an amorphous thin metal protective layer, comprising an insulated substrate, a resistor applied to the insulated substrate, a resistor passivation layer applied to the resistor, and an amorphous thin metal protective layer applied to the resistor passivation layer. The amorphous thin metal protective layer can comprise from 5 atomic % to 90 atomic % of a metalloid of carbon, silicon, or boron. The film can also include a first and second metal, each comprising from 5 atomic % to 90 atomic % of titanium, vanadium, chromium, cobalt, nickel, zirconium, niobium, molybdenum, rhodium, palladium, hafnium, tantalum, tungsten, iridium, or platinum. The second metal is different than the first metal, and the metalloid, the first metal, and the second metal account for at least 70 atomic % of the amorphous thin metal protective layer.
Abstract:
The present disclosure is drawn to a biological fluid, including water, from 0.05 wt % to 3 wt % protein having an acidic isoelectric point (pI) less than about 6.5, and from 0.5 wt % to 20 wt % ionic protein stabilizer system. The ionic protein stabilizer system can include a buffer pair of a weak acid and a weak base, and a lyotropic series ionic compound.
Abstract:
The present disclosure is drawn to amorphous thin metal films and associated methods. Generally, an amorphous thin metal film can comprise a combination of four metals or metalloids including: 5 at % to 85 at % of a metalloid selected from the group of carbon, silicon, and boron; 5 at % to 85 at % of a first metal; 5 at % to 85 at % of a second metal; and 5 at % to 85 at % of a third metal wherein each metal is independently selected from the group of titanium, vanadium, chromium, cobalt, nickel, zirconium, niobium, molybdenum, rhodium, palladium, hafnium, tantalum, tungsten, iridium, and platinum, wherein the first metal, the second metal, and the third metal are different metals. Typically, the four elements account for at least 70 at % of the amorphous thin metal film.