Abstract:
Aspects of the present disclosure relate to evaporation compensation in fluidic devices. An example apparatus for evaporation compensation includes an assessment circuit to determine an amount of evaporation of a volume dispensed in a microwell of a fluidic device. The amount of evaporation may be determined based on the volume in the microwell, and an amount of time after dispensing the volume in the microwell. A compensation circuit may determine, based on the amount of evaporation, a compensation factor for the microwell including an amount of a normalizing fluid to compensate for the amount of evaporation. The compensation circuit may also create a normalization profile for the fluidic device, including an association between the fluidic device and the compensation factor. A dispensing circuit may dispense the normalizing fluid in the microwell according to the normalization profile.
Abstract:
A microfluidic dispenser can include a processor to receive a user input via a user interface related to limiting dilution (or a limiting dilution assay) to be performed, and calculate a dispense volume of a fluid for the limiting dilution based on the user input. The microfluidic dispenser can also include a dispense cassette including a fluid reservoir, and a microfluidic dispense head to dispense the fluid via a nozzle in accordance with the calculated dispense volume.
Abstract:
The present disclosure is drawn to a thermal inkjet printhead stack with an amorphous thin metal protective layer, comprising an insulated substrate, a resistor applied to the insulated substrate, a resistor passivation layer applied to the resistor, and an amorphous thin metal protective layer applied to the resistor passivation layer. The amorphous thin metal protective layer can comprise from 5 atomic % to 90 atomic % of a metalloid of carbon, silicon, or boron. The film can also include a first and second metal, each comprising from 5 atomic % to 90 atomic % of titanium, vanadium, chromium, cobalt, nickel, zirconium, niobium, molybdenum, rhodium, palladium, hafnium, tantalum, tungsten, iridium, or platinum. The second metal is different than the first metal, and the metalloid, the first metal, and the second metal account for at least 70 atomic % of the amorphous thin metal protective layer.
Abstract:
The present disclosure is drawn to bio-ink printer components, methods of printing bio-inks, and multi-fluid live cell printing systems. In one example, a bio-ink printer component can include a bio-ink and a bio-ink ejector fluidly connected or connectable to the bio-ink. The bio-ink can include a buffer solution that is suitable for live cells, and a polymer that includes polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl sulfate, polyethylene glycol, polyester, poly(dimethylsiloxane), cellulose, polysaccharide, or a combination thereof. The bio-ink ejector can include an ejection nozzle and a thermal resistor positioned to heat the bio-ink to form a vapor bubble to eject a droplet of bio-ink from the ejection nozzle.
Abstract:
The present disclosure is drawn to amorphous thin metal films and associated methods. Generally, an amorphous thin metal film can comprise a combination of four metals or metalloids including: 5 at % to 85 at % of a metalloid selected from the group of carbon, silicon, and boron; 5 at % to 85 at % of a first metal; 5 at % to 85 at % of a second metal; and 5 at % to 85 at % of a third metal wherein each metal is independently selected from the group of titanium, vanadium, chromium, cobalt, nickel, zirconium, niobium, molybdenum, rhodium, palladium, hafnium, tantalum, tungsten, iridium, and platinum, wherein the first metal, the second metal, and the third metal are different metals. Typically, the four elements account for at least 70 at % of the amorphous thin metal film.
Abstract:
In one example in accordance with the present disclosure, a fluidic die is described. The fluidic die includes a plurality of ejection subassemblies. Each ejection subassembly includes an ejection chamber to hold a volume of fluid and an opening through which the volume of fluid is ejected via a fluid actuator. A pitch of the ejection subassemblies aligns with a spatial arrangement of nanowells in an array of nanowells on a substrate.
Abstract:
The present disclosure is drawn to amorphous thin metal films and associated methods. Generally, an amorphous thin metal film can comprise a combination of three metals or metalloids including: 5 at % to 90 at % of a metalloid selected from the group of carbon, silicon, and boron; 5 at % to 90 at % of a first metal selected from the group of titanium, vanadium, chromium, cobalt, nickel, zirconium, niobium, molybdenum, rhodium, palladium, hafnium, tantalum, tungsten, iridium, and platinum; and 5 at % to 90 at % of a second metal selected from the group of titanium, vanadium, chromium, cobalt, nickel, zirconium, niobium, molybdenum, rhodium, palladium, hafnium, tantalum, tungsten, iridium, and platinum, wherein the second metal is different than the first metal. Typically, the three elements account for at least 70 at % of the amorphous thin metal film.
Abstract:
An example apparatus comprises includes a first reservoir to store a biologic sample containing a cell, a microfluidic channel fluidically coupled to the first reservoir, and circuitry. The microfluidic channel includes a constriction region including a first circumference that is attenuated from remaining portions of the microfluidic channel, and a fluidic pump disposed within the microfluidic channel. The circuitry is to activate the fluidic pump to direct flow of the cell from the first reservoir to the microfluidic channel and through the constriction region.
Abstract:
The present disclosure is drawn to a thermal inkjet printhead stack with an amorphous metal resistor, including an insulated substrate and a resistor applied to the insulated substrate. The resistor can include from 5 atomic % to 90 atomic % of a metalloid of carbon, silicon, or boron; and from 5 atomic % to 90 atomic % each of a first and second metal of titanium, vanadium, chromium, cobalt, nickel, zirconium, niobium, molybdenum, rhodium, palladium, hafnium, tantalum, tungsten, iridium, or platinum, where the second metal is different than the first metal. The metalloid, the first metal, and the second metal can account for at least 70 atomic % of the amorphous thin metal film.