Abstract:
In one example in accordance with the present disclosure, a fluidic ejection die is described. The die includes an array of nozzles. Each nozzle includes an ejection chamber and an opening. A fluid actuator is disposed within the ejection chamber. The fluidic ejection die also includes an array of passages, formed in a substrate, to deliver fluid to and from the ejection chamber. The fluidic ejection die also includes an array of enclosed cross-channels. Each enclosed cross-channel of the array of enclosed cross-channels is fluidly connected to a respective plurality of passages of the array of passages.
Abstract:
A fluid ejection die may include a fluid actuator, a substrate supporting the fluid actuator, a chamber layer supported by the substrate and a bypass passage in the substrate. The substrate may include a closed inlet channel having an inlet opening for connection to an outlet of a fluid source and an outlet channel having an outlet opening of a first size for connection to an inlet of the fluid source. The chamber layer includes a recirculation passage to supply fluid for ejection by the fluid actuator through an ejection orifice and to circulate fluid across the fluid actuator from the closed inlet channel to the outlet channel. The bypass passage is of a second size less than the first size and connects the inlet channel to the inlet of the fluid source while bypassing any fluid actuator provided for ejecting fluid through an ejection orifice.
Abstract:
A fluid ejection device includes a flexible membrane, an adhesive layer, a piezoelectric material layer, and first and second electrically conductive layers. The adhesive layer and the piezoelectric material layer include edge regions and central regions. A surface of the edge region of the piezoelectric material layer is coplanar with a surface of the edge region of the adhesive layer. The first electrically conductive layer is between the piezoelectric material layer and the adhesive layer such that a surface of the first electrically conductive layer is coplanar with the surface of the edge region of the piezoelectric material layer and the surface of the edge region of the adhesive layer. The second electrically conductive layer is over the surface of the edge region of the piezoelectric material layer, the surface of the edge region of the adhesive layer, the surface of the first electrically conductive layer, and the flexible membrane.
Abstract:
The present disclosure is drawn to microfluidic devices. The microfluidic device includes a substrate, an optically translucent lid, an adhesive securing the substrate to the lid, and an optical barrier material between the substrate and the optically translucent lid.
Abstract:
A die may, in an example, include at least one cross-die recirculation channel formed into the die to recirculate an amount of printing fluid therethrough, the cross-die recirculation channel including a first-sized inlet port and a first-sized outlet port formed on a first side of the die, at least one chamber recirculation channel formed into the die and fluidically coupled to the cross-die recirculation channel to recirculate an amount of printing fluid therethrough, the chamber recirculation channel including a second-sized inlet port and a second-sized outlet port, at least one pump formed within the chamber recirculation channel to recirculate the amount of printing fluid therethrough.
Abstract:
In one example, a piezoelectric actuator includes a piezoelectric material, a first conductor on a first part of the piezoelectric material, and a membrane bonded to the first conductor with an adhesive. The first conductor has a root mean square surface roughness of at least 10 nm at the bonding interface with the membrane.
Abstract:
In one example in accordance with the present disclosure, a fluidic ejection die is described. The die includes an array of nozzles. Each nozzle includes an ejection chamber and an opening. A fluid actuator is disposed within the ejection chamber. The fluidic ejection die also includes an array of passages, formed in a substrate, to deliver fluid to and from the ejection chamber. The fluidic ejection die also includes an array of enclosed cross-channels. Each enclosed cross-channel of the array of enclosed cross-channels is fluidly connected to a respective plurality of passages of the array of passages.
Abstract:
A die may, in an example, include at least one cross-die recirculation channel formed into the die to recirculate an amount of printing fluid therethrough, the cross-die recirculation channel including a first-sized inlet port and a first-sized outlet port formed on a first side of the die, at least one chamber recirculation channel formed into the die and fluidically coupled to the cross-die recirculation channel to recirculate an amount of printing fluid therethrough, the chamber recirculation channel including a second-sized inlet port and a second-sized outlet port, at least one pump formed within the chamber recirculation channel to recirculate the amount of printing fluid therethrough.