Abstract:
A ferrule holding member has a tube-shaped receiving portion including a receiving space therein, the receiving space receiving at least partially a ferrule mounted to a terminal of an optical fiber; and an engaging portion engaged to the ferrule received in the receiving portion, to thereby regulate movement of the ferrule relative to the receiving portion. The receiving portion includes a communicating hole to allow the receiving space to communicate externally. The engaging portion includes an engaging protrusion configured to be inserted in the communicating hole from an outer periphery side of the receiving portion, to engage the ferrule.
Abstract:
An optical module has a circuit board, a photoelectric conversion element mounted on a mount surface of the circuit board, an optical coupling member for holding an optical fiber and optically coupling the optical fiber and the photoelectric conversion element, a semiconductor circuit element mounted on the mount surface of the circuit board and electrically connected to the photoelectric conversion element, and a plate-shaped supporting substrate arranged to sandwich the optical coupling member between the supporting substrate and the circuit board. An electrically conductive metal foil which extends in a thickness direction of the supporting substrate is provided integrally with a side surface of the supporting substrate, and the metal foil is connected at one end thereof to an electrode provided on a non-mount surface of the circuit board.
Abstract:
An optical module includes a substrate, an optical device of a surface-emitting element or a surface-receiving element mounted on a surface of the substrate with a light-emitting portion or a light-receiving portion located to face the surface of the substrate, an optical fiber disposed parallel to the surface of the substrate and in a longitudinal direction of the substrate, a mirror provided to face the light-emitting portion or the light-receiving portion of the optical device and a tip of the optical fiber, and optically connect the optical device and the optical fiber, and an optical fiber receiving groove provided in the surface of the substrate to receive the optical fiber. A width of the mirror is greater than a width of the optical fiber receiving groove. Reflecting portions are provided on edges, respectively, of a mirror side end of the optical fiber receiving groove, and the reflecting portions reflect incident light from the mirror facing the edges, again back to the facing mirror.
Abstract:
An optical module includes a circuit board having flexibility, a photoelectric conversion element mounted on a mounting surface of the circuit board, a semiconductor circuit element mounted on the mounting surface of the circuit board and electrically connected to the photoelectric conversion element, a plate-shaped optical connection member having a groove into which an end part of an optical fiber is pushed so as to be housed and optically connecting the optical fiber and the photoelectric conversion element, and a supporting member arranged so as to sandwich the optical connection member between the circuit board. The groove is formed between the semiconductor circuit element and the supporting member so as to have an opening into which the optical fiber is pushed at the supporting member side. The semiconductor circuit element has a height from the mounting surface of the circuit board higher than the photoelectric conversion element.
Abstract:
An optical-electrical composite cable includes an optical fiber, a tubular resin inner cover to enclose the optical fiber, a plurality of electric wires disposed on an outside of the inner cover, and a tubular outer cover to collectively cover the plurality of electric wires. The plurality of electric wires are helically wound around an outer peripheral surface of the inner cover so as to be situated between the inner cover and the outer cover.
Abstract:
An optical module includes a circuit board including a mount surface and a non-mount surface opposite the mount surface, a photoelectric conversion element mounted on the mount surface of the circuit board, an optical coupling member for holding an optical fiber and optically coupling the optical fiber and the photoelectric conversion element, a semiconductor circuit element mounted on the mount surface of the circuit board, and electrically connected to the photoelectric conversion element, a plate-shaped supporting member arranged so as to sandwich the optical coupling member between the supporting member and the circuit board, and an electrically conductive body supported by the supporting member, extended in a thickness direction of the supporting member, and connected at one end to an electrode provided on the non-mount surface of the circuit board.
Abstract:
A photoelectric composite wiring module includes a flexible first substrate including a conductive line and an optical fiber mounted thereon along a longitudinal direction thereof, a second substrate including a recessed portion formed thereon to receive the conductive line and the optical fiber that protrude from an end portion of the first substrate, and an optical device mounted on the second substrate and optically coupled to the optical fiber. The recessed portion includes an opening on a mounting surface side of the second substrate to mount the optical device.
Abstract:
An optical module includes a circuit board including a mount surface and a non-mount surface opposite the mount surface, a photoelectric conversion element mounted on the mount surface of the circuit board, an optical coupling member for holding an optical fiber and optically coupling the optical fiber and the photoelectric conversion element, a semiconductor circuit element mounted on the mount surface of the circuit board, and electrically connected to the photoelectric conversion element, a plate-shaped supporting member arranged so as to sandwich the optical coupling member between the supporting member and the circuit board, and an electrically conductive body supported by the supporting member, extended in a thickness direction of the supporting member, and connected at one end to an electrode provided on the non-mount surface of the circuit board.