Abstract:
The invention relates to a process to prepare 2-chloro-3,3,3-trifluoropropene (HCO-1233xf) or 2-chloro-1,1,12-tetrafluoropropane (HCFC-244bb) using dichloro-trifluoropropanes and/or trichloro-difluoropropanes, and to prepare 2-chloro-3,3,3-trifluoropropene (HCO-1233xf) using various 242 and 243 isomers.
Abstract:
The present invention relates, in part, to the discovery that, during the fluorination of certain fluoroolefm starting reagents, particularly, 1,1,2,3-tetrachloropropene (1230xa), oligomerization/polymerization of such starting reagents reduces the conversion process and leads to increased catalyst deactivation. The present invention also illustrates that providing one or more organic co-feed to the fluooolefin starting stream reduces such oligomerization/polymerization and improves catalystic stability.
Abstract:
The invention relates to a process to prepare 2-chloro-3,3,3-trifluoropropene (HCO-1233xf) or 2-chloro-1,1,12-tetrafluoropropane (HCFC-244bb) using dichloro-trifluoropropanes and/or trichloro-difluoropropanes, and to prepare 2-chloro-3,3,3-trifluoropropene (HCO-1233xf) using various 242 and 243 isomers.
Abstract:
The present invention relates, in part, to the discovery that, during the fluorination of certain fluoroolefin starting reagents, oligomerization/polymerization of such reagents reduces the conversion process and leads to increased catalyst deactivation. The present invention also illustrates that vaporizing such starting reagents in the presence of one or more organic co-feed reduces such oligomerization/polymerization and improves catalytic stability.
Abstract:
The invention relates to a separation process whereby 2-chloro-3,3,3-trifluoropropene (1233xf) is separated from a mixture containing other fluorinated organics and high boiling materials such as dimers using azeotropes of HF formed by adding appropriate amounts to the mixture which facilitate separation by, e.g. distillation.
Abstract:
The present invention relates, in part, to the discovery that, during the fluorination of certain fluoroolefin starting reagents, particularly, 1,1,2,3-tetrachloropropene (1230xa), oligomerization/polyinerization of such starting reagents reduces the conversion process and leads to increased catalyst deactivation. The present invention also illustrates that providing one or more organic co-feed to the fluooolefin starting stream reduces such oligomerization/polymerization and improves catalystic stability.
Abstract:
The invention relates to a separation process whereby 2-chloro-3,3,3-trifluoropropene (1233xf) is separated from a mixture containing other fluorinated organics and high boiling materials such as dimers using azeotropes of HF formed by adding appropriate amounts to the mixture which facilitate separation by, e.g. distillation.