Abstract:
A process for making 2,3,3,3-tetrafluoropropene (HFO-1234yf) includes providing a composition including 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) to a reactor including a heater surface at a surface temperature greater than about 850° F. (454° C.), and then bringing the composition into contact with the heater surface for a contact time of less than 10 seconds to dehydrochlorinate a portion of the HCFC-244bb to make HFO-1234yf.
Abstract:
The present invention relates, in part, to the discovery that the presence of HF in a HCFC-244bb feedstream in a reaction for the preparation of HFO-1234yf results in selectivity changeover from HFO-1234yf to HCFO-1233xf. By substantially removing HF, it is shown that the selectivity to HFO-1234yf via dehydrochlorination of HCFC-244bb is improved.
Abstract:
The present invention relates in part to a method of stabilizing chloropropenes, such as 1,1,2,3-tetrachloropropene, otherwise known to decompose and degrade, and to the resulting stabilized chloropropene, using a morpholine compound and/or a trialkyl phosphate compound as defined herein. Such stabilized chloropropenes are useful in the manufacture of hydrofluoroolefins such as 2,3,3,3-tetrafluoroprop-1-ene (1234yf).
Abstract:
The invention relates to a process to prepare 2-chloro-3,3,3-trifluoropropene (HCO-1233xf) or 2-chloro-1,1,12-tetrafluoropropane (HCFC-244bb) using dichloro-trifluoropropanes and/or trichloro-difluoropropanes, and to prepare 2-chloro-3,3,3-trifluoropropene (HCO-1233xf) using various 242 and 243 isomers.
Abstract:
Disclosed is a composition comprised of at least one compound selected from 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoro-1-propene and 1-chloro-3,3,3-trifluoropropene and halogenated impurity selected from the group consisting of HFO-1141 (CH2═CHF), HCFO-1140 (CH2═CHCl), and HCFO-1131 (CH2═CFCl and/or trans/cis-CHF═CHCl) and combination thereof, said halogenated impurity being present in said composition in an amount of 50 ppm or less.
Abstract:
The present process relates to a process comprising: contacting a mixture comprising 2,3,3,3-tetrafluoropropene and at least one halogenated ethylene impurity with at least one adsorbent or at least one chemisorption catalyst to reduce the concentration of said at least one halogenated ethylene impurity.
Abstract:
The present invention relates to a provides a catalyst comprising (a) a solid support comprising an alkaline earth metal oxide, fluoride, or oxyfluoride, and (b) at least one elemental metal disposed on or within said support, preferably wherein said elemental metal is present in an amount from about 0.01 to about 10 weight percent based upon the total weight of the metal and support. It also relates to the use of the catalyst for the dehydrochlorination of a hydrochlorofluorocarbon.
Abstract:
Disclosed is a process to separate halogenated organic contaminants such as 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), 2,3,3,3-tetrafluoropropene (HFO-1234yf), trifluoropropyne (TFPY) from hydrochloric acid (HCl) with an adsorbent selected from an activated carbon, an MFI molecular sieve, a carbon molecular sieve, silica, and combinations thereof.
Abstract:
The present invention relates, in part, to the discovery that, during the fluorination of certain fluoroolefm starting reagents, particularly, 1,1,2,3-tetrachloropropene (1230xa), oligomerization/polymerization of such starting reagents reduces the conversion process and leads to increased catalyst deactivation. The present invention also illustrates that providing one or more organic co-feed to the fluooolefin starting stream reduces such oligomerization/polymerization and improves catalystic stability.
Abstract:
The invention provides for a method of regenerating a solid adsorbent, such as a molecular sieve or activated carbon, using stable fluorinated hydrocarbon compounds such as, for example, HFC-245cb (1,1,1,2,2-pentafluoropropane, as a regeneration fluid.