Abstract:
This application provides a signal generation method and an apparatus. In the method, a first communication apparatus generates a first signal, and sends the first signal to a second communication apparatus, who receives the first signal, and then demodulates the first signal. A symbol included in the first signal is carried on K+2(M−1) subcarriers. Middle K subcarriers are valid subcarriers, start M−1 subcarriers and last M−1 subcarriers are redundant subcarriers, and a subcarrier spacing between adjacent subcarriers is related to a feature of a time domain pulse used to shape the subcarrier, wherein a width of each of some or all side lobes of a spectrum of the time domain pulse is equal to 1/M of a main lobe width of the time domain pulse, the subcarrier spacing is 1/M of the main lobe width. K is a positive integer, and M is a positive integer greater than 1.
Abstract:
A channel state information processing method and a communication apparatus. The method includes obtaining CSI information of a channel, where the CSI information includes an N-dimensional antenna domain coefficient, and N is an integer greater than 1; performing a beam domain transformation on the CSI information based on an array response feature, to obtain first CSI transformation information that includes an N-dimensional beam domain coefficient; performing a cluster sparse domain transformation on the first CSI transformation information based on a cluster sparse transformation basis, to obtain second CSI transformation information that includes an N-dimensional cluster sparse domain coefficient and the cluster sparse transformation basis is determined based on a channel prior statistical feature of the channel; and sending quantized values of L cluster sparse domain coefficients in the N-dimensional cluster sparse domain coefficient to a second communication apparatus, where L is a positive integer less tha
Abstract:
A radio resource configuration method and device are disclosed. The radio resource configuration method includes: after a piece of user equipment UE establishes a connection with a base station according to a system bandwidth in a broadcast message, determining, by the base station for the UE, resource configuration used for communication between the UE and the base station, where the resource configuration includes at least one of a resource allocation bandwidth, a channel state information CSI pilot bandwidth, and a CSI measurement bandwidth, where the resource allocation bandwidth is a bandwidth used to generate resource block allocation information in downlink control information; and sending, by the base station to the UE by using dedicated signaling or a common message, the resource configuration determined for the UE and used for communication between the UE and the base station.
Abstract:
A radio resource configuration method and device are disclosed. The radio resource configuration method includes: after a piece of user equipment UE establishes a connection with a base station according to a system bandwidth in a broadcast message, determining, by the base station for the UE, resource configuration used for communication between the UE and the base station, where the resource configuration includes at least one of a resource allocation bandwidth, a channel state information CSI pilot bandwidth, and a CSI measurement bandwidth, where the resource allocation bandwidth is a bandwidth used to generate resource block allocation information in downlink control information; and sending, by the base station to the UE by using dedicated signaling or a common message, the resource configuration determined for the UE and used for communication between the UE and the base station.
Abstract:
A radio resource configuration method and device are disclosed. The radio resource configuration method includes: after a piece of user equipment UE establishes a connection with a base station according to a system bandwidth in a broadcast message, determining, by the base station for the UE, resource configuration used for communication between the UE and the base station, where the resource configuration includes at least one of a resource allocation bandwidth, a channel state information CSI pilot bandwidth, and a CSI measurement bandwidth, where the resource allocation bandwidth is a bandwidth used to generate resource block allocation information in downlink control information; and sending, by the base station to the UE by using dedicated signaling or a common message, the resource configuration determined for the UE and used for communication between the UE and the base station.
Abstract:
An apparatus for band-limited frequency division multiplexing for uplink transmission to a base station or access point, particularly from an IoT device, comprises a signal modulator to transmit a signal over a set of contiguous equally spaced frequency sub-carriers ranging from a lowest frequency sub-carrier via intermediate sub-carriers to a highest frequency sub-carrier. The signal modulator contains a filter to apply asymmetric filtering over the range of the frequency sub-carriers, thereby to reduce a peak-to-average power ratio of the transmitted signal.
Abstract:
The present invention provides a method for processing an enhanced physical downlink control channel (EPDCCH), a network-side device, and a user equipment. The method includes: notifying a user equipment (UE) of M physical resource block (PRB) sets used for EPDCCH transmission and N reference signal (RS) configurations used for EPDCCH downlink control information (DCI) rate matching and/or EPDCCH resource mapping, and notifying the UE of correspondence between the M PRB sets and the N RS configurations, where N is a positive integer greater than 1, and M is a positive integer; and performing the EPDCCH DCI rate matching and/or the EPDCCH resource mapping according to the correspondence between the M PRB sets and the N RS configurations.
Abstract:
This application provides a communication method and apparatus, and relates to the field of communication technologies. In the method, a first communication apparatus determines a first index indicating a first precoding vector, and sends the first index to a second communication apparatus. The second communication apparatus receives the first index from the first communication apparatus, determines the first precoding vector based on the first index, and precodes data based on the first precoding vector. The first precoding vector includes spatial angle information and spatial depth information of a channel between the first communication apparatus and the second communication apparatus.
Abstract:
The present invention provides a method for processing an enhanced physical downlink control channel (EPDCCH), a network-side device, and a user equipment. The method includes: notifying a user equipment (UE) of M physical resource block (PRB) sets used for EPDCCH transmission and N reference signal (RS) configurations used for EPDCCH downlink control information (DCI) rate matching and/or EPDCCH resource mapping, and notifying the UE of correspondence between the M PRB sets and the N RS configurations, where N is a positive integer greater than 1, and M is a positive integer; and performing the EPDCCH DCI rate matching and/or the EPDCCH resource mapping according to the correspondence between the M PRB sets and the N RS configurations.
Abstract:
This application provides a signal generation method and an apparatus. In the method, a first communication apparatus generates a first signal, and sends the first signal to a second communication apparatus, who receives the first signal, and then demodulates the first signal. A symbol included in the first signal is carried on K+2(M−1) subcarriers. Middle K subcarriers are valid subcarriers, start M−1 subcarriers and last M−1 subcarriers are redundant subcarriers, and a subcarrier spacing between adjacent subcarriers is related to a feature of a time domain pulse used to shape the subcarrier, wherein a width of each of some or all side lobes of a spectrum of the time domain pulse is equal to 1/M of a main lobe width of the time domain pulse, the subcarrier spacing is 1/M of the main lobe width. K is a positive integer, and M is a positive integer greater than 1.