摘要:
Systems and methods are provided for managing power consumption of a medical imaging detector by the use of triggering signals, environmental condition data, and/or determination of a variable time interval triggering event that is unique for each power consumption state. Systems and methods are provided for managing power and temperature of a device, after receiving a request for a function to be performed by the device determining an “on” trigger component, an “off” trigger component, associated circuits for performing the received function, providing power to the associated circuits upon the occurrence of the “on” trigger component, and removing power to the associated circuits upon the occurrence of the “off” trigger component. Further, an instruction is described for determining and displaying a variable time interval that is indicative of a time to change from one state to a desired state.
摘要:
The present technique provides a multi-tile detector and a process for assembling the multi-tile detector using a flexible structure and intermediate electrical connections. The present technique minimizes edge gaps between adjacent detector tiles by coupling the detector tiles to the flexible structure and then flexing the flexible structure to close the edge gaps. Intermediate electrical connections, such as interlayer solder bumps, also may be used to minimize visible artifacts associated with tiling of the detector tiles. The present technique also may use a plurality of soldering materials having different melting temperatures to facilitate multiple soldering steps that are nondestructive of previous soldering steps.
摘要:
A method is provided for maximizing substrate usage in the fabrication of flat panel displays or detectors, while also maximizing electrostatic protection for the displays or detectors. Initially, at least two detectors are positioned on the substrate, with each of the detectors having a guard ring of a certain width. At least a section of the guard ring width of one detector is approximately adjacent to a section of the guard ring width of another detector. The approximately adjacent guard ring width sections are then positioned such that a maximum overlap of the adjacent guard ring width sections is achieved, while still providing each display or detector with electrostatic discharge protection. Each of the detectors is separated from the other detectors and the remainder of the substrate by the process of scribing partially through the substrate and breaking at the scribe mark or by sawing.
摘要:
The present invention, in one form, is a flexible interconnect circuit for altering the resolution of an imaging system. In one embodiment, by combining a plurality of detector array signal lines within the interconnect circuit, the imaging system resolution is altered. Each interconnect circuit includes a plurality of contacts at a first end and a second end and a plurality of conductors extending therebetween electrically connected to at least one contact at each end. By altering the number of contacts which are connected together, the resolution of the imaging system is altered.
摘要:
Systems and methods are provided for managing power consumption of a medical imaging detector by the use of triggering signals, environmental condition data, and/or determination of a variable time interval triggering event that is unique for each power consumption state. Systems and methods are provided for managing power and temperature of a device, after receiving a request for a function to be performed by the device determining an “on” trigger component, an “off” trigger component, associated circuits for performing the received function, providing power to the associated circuits upon the occurrence of the “on” trigger component, and removing power to the associated circuits upon the occurrence of the “off” trigger component. Further, an instruction is described for determining and displaying a variable time interval that is indicative of a time to change from one state to a desired state.
摘要:
An x-ray detector is provided to acquire an image. The x-ray detector comprises detector elements that store a charge representative of an x-ray level. The detector elements are arranged in rows and columns. Scan lines are arranged in rows or columns and connect to the detector elements. First and second sets of sensing circuits read the charge from the detector elements. A first set of data lines connects to the first set of sensing circuits and a second set of data lines connects to the second set of sensing circuits. At least one of the data lines from the first set of data lines is interspersed with the second set of data lines.
摘要:
A technique is provided for increasing the pixel pitch without increasing the interconnect density of a digital detector. Generally, a digital detector has an array of rows and columns of pixels, read out electronics and scan electronics, that are configured to generate and transmit signals based upon radiation impacting the detector. The detector also having a plurality of scan lines, which are coupled to the plurality of rows of pixels. The present technique also provides a multiplexing circuit for selectively coupling the rows of pixels to the respective scan lines for read out of the signals.
摘要:
In one embodiment, a digital X-ray detector includes a plurality of pixel regions. Each pixel region includes one or more photodiodes. The plurality of pixel regions form a detector panel having at least one corner truncated with respect to a rectangle to form a rounded shape or greater than four-sided polygon.
摘要:
A digital X-ray detector includes a multi-functional panel support configured to support a digital detector array on a first side of the panel support and electronics on a second side of the panel support. The panel support includes a first enclosure and a rechargeable battery disposed within the first enclosure.
摘要:
An imaging system is provided having an EMI shield configured to shield one or more imaging components. The EMI shield includes a first material having a first plurality of conductive elements integrally formed within a first nonconductive material and also includes a generally nonconductive exterior. A method is provided for shielding EMI in an imaging system. The method includes providing an EMI shielding enclosure that includes a first material having a first plurality of conductive elements disposed in a first non-conductive material, and a second material having a second plurality of conductive elements disposed in a second non-conductive material, wherein the first plurality of conductive elements engages the second plurality of conductive elements to form a conduction path. Another method for shielding EMI in an imaging system is provided, that includes providing an EMI shielding enclosure having a first material that has a non-conductive surface and a second EMI shielding material disposed on the non-conductive surface of the first material.