摘要:
Methods and apparatus for multi-carrier communication with variable channel bandwidth are disclosed, where the time frame structure and the OFDM symbol structure are invariant and the frequency-domain signal structure is flexible. In one embodiment, a mobile station, upon entering a geographic area, uses a core-band to initiate communication and obtain essential information and subsequently switches to full operating bandwidth of the area for the remainder of the communication. If the mobile station operates in a wide range of bandwidths, the mobile station divides the full range into sub-ranges and adjusts its sampling frequency and its FFT size in each sub-range.
摘要:
Methods and apparatus disclosed maximize the capacity of serving cells and minimize inter-cell interferences due to power emission from serving cells in a multi-carrier, multi-cell communication system. The control methods and apparatus take into account various factors such as cell configuration, frequency reuse, geometry and path-loss information, transmission priority, subchannel configuration, feedback from other cells, or any combination thereof, and produce signals that control the transmission power levels and the modulation and coding of transmitted signals.
摘要:
Hybrid ARQ is employed in a multi-carrier communication system for retransmission of erroneous packets by taking advantage of time/frequency/space diversity and by combining ARQ functions at physical layer and MAC layers, making the multi-carrier system more robust in a high packet-error environment.
摘要:
A method and apparatus for content multicasting and broadcasting and data unicasting in a broadband multicarrier wireless communication system. A base station is configured to transmit, and a mobile station is configured to receive, a sequence of consecutive frames. The frames comprise two types: frames containing time-frequency resources for content multicasting and broadcasting via a single frequency network, and frames containing time-frequency resources for data unicasting without the use of a single frequency network. The two types of frames are intermixed in accordance with an intermixing configuration pattern. The intermixing configuration pattern is indicated by a bit-map contained in a scheduling signal.
摘要:
Methods and apparatus disclosed maximize the capacity of serving cells and minimize inter-cell interferences due to power emission from serving cells in a multi-carrier, multi-cell communication system. The control methods and apparatus take into account various factors such as cell configuration, frequency reuse, geometry and path-loss information, transmission priority, subchannel configuration, feedback from other cells, or any combination thereof, and produce signals that control the transmission power levels and the modulation and coding of transmitted signals.
摘要:
In a broadband wireless communication system, a spread spectrum signal is intentionally overlapped with an OFDM signal, in a time domain, a frequency domain, or both. The OFDM signal, which inherently has a high spectral efficiency, is used for carrying broadband data or control information. The spread spectrum signal, which is designed to have a high spread gain for overcoming severe interference, is used for facilitating system functions such as initial random access, channel probing, or short messaging. Methods and techniques are devised to ensure that the mutual interference between the overlapped signals is minimized to have insignificant impact on either signal and that both signals are detectable with expected performance by a receiver.
摘要:
In a cellular wireless network, methods and apparatus are disclosed for a signal broadcasting scheme that can be individually augmented for users with poor reception. The network employs a first downlink channel (broadcast CH) for broadcasting data to all mobile stations (S1, S2, S3), a second downlink channel (regular CH) for sending signals to a specific mobile station in a cell, and an uplink channel for feeding back information to the base station. To achieve a certain user reception quality, the system adjusts its broadcasting parameters based on the statistical analysis of the feedback data (feedback). If some users still require better reception, the system individually augments their broadcast signals via the second downlink channels. Methods and apparatus are also disclosed for synchronization of data distribution by base stations (1,2), which, in part, allows the receivers to combine the receiving signals and improve their reception quality.
摘要:
An arrangement is disclosed where in a multi-carrier communication system, the modulation scheme, coding attributes, training pilots, and signal power may be adjusted to adapt to channel conditions in order to maximize the overall system capacity and spectral efficiency without wasting radio resources or compromising error probability performance, etc.
摘要:
A broadband wireless communication system, wherein both Multi-Carrier (MC) and Direct Sequence Spread Spectrum (DSSS) signals are intentionally overlaid together, in both time and frequency domains. The overlaying mitigates the weaknesses of each technique. The MC signal carries the broadband data signal and takes advantage of its high spectral efficiency, while the DSSS signal is used for special purpose processing such as initial random access, channel probing, and short messaging, where properties such as signal simplicity, self synchronization, and performance under severe interference are desired. The methods and techniques ensure that the MC and the DSSS signals are both distinguishable and that the interference between the overlaid signals is minimized to have insignificant impact on the expected performance of either signal.
摘要:
Methods and apparatus for multi-carrier communication with variable channel bandwidth are disclosed, where the time frame structure and the OFDM symbol structure are invariant and the frequency-domain signal structure is flexible. In one embodiment, a mobile station, upon entering a geographic area, uses a core-band to initiate communication and obtain essential information and subsequently switches to full operating bandwidth of the area for the remainder of the communication. If the mobile station operates in a wide range of bandwidths, the mobile station divides the full range into sub-ranges and adjusts its sampling frequency and its FFT size in each sub-range.