摘要:
The present invention relates to an electrolytic solution for a lithium battery and a lithium battery using the same. The organic electrolytic solution includes a lithium salt, a mixed organic solvent comprising a high dielectric constant solvent and a low boiling-point solvent, and an additive. The additive used in the electrolytic solution is a heterocyclic compound of Formula (1): where R1, R2 and R3 may each independently be a C1-C10 linear or branched alkyl group; R4 may be a C1-C10 linear or branched alkylene group; X may be a heterocyclic ring containing N and O whereby a tetraallkyl orthosilicate functional group may be linked to N. The lithium battery using the organic electrolytic solution of the present invention is highly reliable and maintains a constant thickness during a charge/discharge cycle.
摘要:
The present invention relates to an electrolytic solution for a lithium battery and a lithium battery using the same. The organic electrolytic solution includes a lithium salt, a mixed organic solvent comprising a high dielectric constant solvent and a low boiling-point solvent, and an additive. The additive used in the electrolytic solution is a heterocyclic compound of Formula (1): where R1, R2 and R3 may each independently be a C1-C10 linear or branched alkyl group; R4 may be a C1-C10 linear or branched alkylene group; X may be a heterocyclic ring containing N and O whereby a tetraallkyl orthosilicate functional group may be linked to N. The lithium battery using the organic electrolytic solution of the present invention is highly reliable and maintains a constant thickness during a charge/discharge cycle.
摘要:
An organic electrolytic solution containing an organic solvent and a compound that contains an anionic polymerization monomer with an added component capable of being chelated with a lithium metal cation. A lithium battery may utilize the organic electrolytic solution. The lithium battery may have improved stability to reductive decomposition, reduced first cycle irreversible capacity, and improved charging/discharging efficiency and lifespan. Moreover, reliability of the battery may be improved because the battery, after formation and standard charging at room temperature, may not swell beyond a predetermined thickness. Even when the lithium battery swells significantly at a high temperature, the capacity of the lithium battery may be high enough for practical applications due to its recovery capacity.
摘要:
A secondary battery with improved flexibility. The secondary battery includes: a substrate; a first electrode collector integrally formed with the substrate as one body; a first electrode material mixture layer; an electrolyte layer; a second electrode material mixture layer; and a second electrode collector having a metallic mesh structure integrally formed with the second electrode material mixture layer as one body, wherein the first electrode material mixture layer, the electrolyte layer, and the second electrode material mixture layer are sequentially formed on the first electrode collector in this order.
摘要:
An apparatus for storing energy may include: a plurality of nanowire cells electrically connected to each other; and a storage for storing electrical energy generated from the nanowire cells. Each of the plurality of nanowire cells may include: first and second electrodes disposed at an interval; and a nanowire, which is disposed between the first and the second electrodes and made of a piezoelectric material. The plurality of nanowire cells may be electrically connected, so that voltage or current may be increased. Therefore, wireless recharging of the storage connected to the nanowire cells with electrical energy may be enabled.
摘要:
A negative electrode composition for inkjet print including beta phase TiO2 particles, an aqueous solvent, and a dispersant, a negative electrode prepared by inkjet printing the negative electrode composition, and a lithium battery including the negative electrode.
摘要:
A porous anode active material including a Group 14 element oxide and a non-active material having no reactivity with lithium; a method of manufacturing the porous anode active material; an anode including the porous anode active material; and a lithium battery including the anode. The non-active material may be silica.
摘要:
A porous anode active material including a Group 14 element oxide and a non-active material having no reactivity with lithium; a method of manufacturing the porous anode active material; an anode including the porous anode active material; and a lithium battery including the anode. The non-active material may be silica.
摘要:
An apparatus for storing energy may include: a plurality of nanowire cells electrically connected to each other; and a storage for storing electrical energy generated from the nanowire cells. Each of the plurality of nanowire cells may include: first and second electrodes disposed at an interval; and a nanowire, which is disposed between the first and the second electrodes and made of a piezoelectric material. The plurality of nanowire cells may be electrically connected, so that voltage or current may be increased. Therefore, wireless recharging of the storage connected to the nanowire cells with electrical energy may be enabled.
摘要:
A secondary battery with improved flexibility. The secondary battery includes: a substrate; a first electrode collector integrally formed with the substrate as one body; a first electrode material mixture layer; an electrolyte layer; a second electrode material mixture layer; and a second electrode collector having a metallic mesh structure integrally formed with the second electrode material mixture layer as one body, wherein the first electrode material mixture layer, the electrolyte layer, and the second electrode material mixture layer are sequentially formed on the first electrode collector in this order.