摘要:
A method of making a battery having a cathode includes contacting carbon particles with an oxidizing agent, such as, for example, an inorganic acid, an organic acid, or an oxidizing gas, and incorporating the carbon particles into the cathode. The cathode can be used, for example, in a metal-air battery that includes a monolayer or dual-layer cathode, or in a fuel cell.
摘要:
A method of making a cathode for a lithium primary battery includes lithiated manganese dioxide and a carbon fluoride. The cathode can provide high capacity and voltage with low gassing.
摘要:
One example includes a battery case sealed to retain electrolyte, an electrode disposed in the battery case, the electrode comprising a current collector formed of a framework defining open areas disposed along three axes (“framework”), the framework electrically conductive, with active material disposed in the open areas; a conductor electrically coupled to the electrode and sealingly extending through the battery case to a terminal disposed on an exterior of the battery case, a further electrode disposed in the battery case, a separator disposed between the electrode and the further electrode and a further terminal disposed on the exterior of the battery case and in electrical communication with the further electrode, with the terminal and the further terminal electrically isolated from one another.
摘要:
A primary lithium cell having an anode comprising lithium and a cathode comprising electrochemically active material selected from silver copper oxides having the formula AgCuO2 or Ag2Cu2O3 or mixtures thereof. The cathode can include a manganese dioxide in admixture with said silver copper oxides. The cell exhibits higher capacity and energy output than conventional lithium cells having an anode comprising lithium and cathode comprising manganese dioxide.
摘要翻译:具有包含锂和负极的阳极的初级锂电池包括选自具有式AgCuO 2或Ag 2 Cu 2 O 3的银氧化铜或其混合物的电化学活性材料。 阴极可以包括与所述银铜氧化物混合的二氧化锰。 与具有包含二氧化锰的锂和阴极的阳极的常规锂电池相比,电池表现出更高的容量和能量输出。
摘要:
The present subject matter provides apparatus and methods for controlling lithium deposition during manufacture of implantable medical device batteries. A method includes processing materials to form the battery and performing a discharge conditioning process step. The discharge conditioning process step includes using a reduced discharge load and applying a discharge load intermittently to decrease formation of lithium deposits on negatively charged surfaces within the battery.
摘要:
One embodiment of the present subject matter includes a battery having a stack of substantially planar battery electrodes, the stack including a first electrode including a first tab, and a second electrode including a second tab, with the first tab electrically connected to the second tab. The embodiment includes a first separator layer and a second separator layer sandwiching the first electrode, with the edges of the first separator layer and the second separator connected with a weld, the first separator layer and the second separator layer defining an interior space in which the first electrode is disposed, with the first tab extending outside the interior space. The embodiment includes an battery housing having electrolyte disposed therein, the housing including at least a first aperture and a feedthrough aperture; a lid conformed and sealed to the first aperture; and a feedthrough conformed and sealed to the feedthrough aperture.
摘要:
A method of making a cathode assembly for a metal-air battery includes extruding a composition having a catalyst, a fibrillatable material, and a lubricant, to form an extrudate; calendering the extrudate; connecting the extrudate to a current collector; and heating the extrudate to remove at least a portion of the lubricant to make the cathode assembly. The method can further include laminating a separator to the cathode assembly.
摘要:
The efficacy of a passivating layer in a rechargeable lithium ion cell is increased by heating the charged cell and storing the charged cell for a pre-determined period of time.
摘要:
One embodiment of the present subject matter includes a battery having a stack of substantially planar battery electrodes, the stack including a first electrode including a first tab, and a second electrode including a second tab, with the first tab electrically connected to the second tab. The embodiment includes a first separator layer and a second separator layer sandwiching the first electrode, with the edges of the first separator layer and the second separator connected with a weld, the first separator layer and the second separator layer defining an interior space in which the first electrode is disposed, with the first tab extending outside the interior space. The embodiment includes an battery housing having electrolyte disposed therein, the housing including at least a first aperture and a feedthrough aperture; a lid conformed and sealed to the first aperture; and a feedthrough conformed and sealed to the feedthrough aperture.
摘要:
The present subject matter provides apparatus and methods for controlling lithium deposition during manufacture of implantable medical device batteries. A method includes processing materials to form the battery and performing a discharge conditioning process step. The discharge conditioning process step includes using a reduced discharge load and applying a discharge load intermittently to decrease formation of lithium deposits on negatively charged surfaces within the battery.