摘要:
A method reduces artifacts in an input image. A variance image is generated from the input image. The input image is partitioned into a plurality of blocks of pixels. A set of classifications is defined. The set of classifications includes smooth, texture, and edge. A particular classification is assigned to each block of pixels of the input image according to the variance image, to generate smooth blocks, texture blocks, and edge blocks. A fuzzy filter is applied to each pixel of only each edge block.
摘要:
A method classifies pixels in an image by first partitioning the image into blocks. A variance of an intensity is determined for each pixel, and for each block the pixel with the maximum variance is identified. Then, the blocks are classified into classes according to the maximum variance.
摘要:
A method classifies pixels in an image by first partitioning the image into blocks. A variance of an intensity is determined for each pixel, and for each block the pixel with the maximum variance is identified. Then, the blocks are classified into classes according to the maximum variance.
摘要:
A method filters pixels in an image, by first partitioning the image into blocks. Edge block are identified. A variance of an intensity for each pixel in each edge block is determined. Then, each pixel in each edge block is filtered with a filter that is dependant on the variance of the pixel.
摘要:
An invention provides a system and method for filtering pixels in an image using only fixed-point and summation operations. First, a filtering window is centered on an input pixel. Based on a difference between the intensity of the input pixel and its neighboring pixels, fuzzy filter weights are obtained. A sum of the fuzzy filter weights is used to determine a normalization factor. Then, the pixel intensities, fuzzy filter weights and the normalization factor are used to obtain an output pixel corresponding to the input pixel.
摘要:
A method reduces artifacts in an input image. A variance image is generated from the input image. The input image is partitioned into a plurality of blocks of pixels. A set of classifications is defined. The set of classifications includes smooth, texture, and edge. A particular classification is assigned to each block of pixels of the input image according to the variance image, to generate smooth blocks, texture blocks, and edge blocks. A fuzzy filter is applied to each pixel of only each edge block.
摘要:
A method filters pixels in an image, by first partitioning the image into blocks. Edge block are identified. A variance of an intensity for each pixel in each edge block is determined. Then, each pixel in each edge block is filtered with a filter that is dependant on the variance of the pixel.
摘要:
Stereospecific carbonyl reductases SCR1, SCR2, and SCR3 are described herein as are nucleotide sequences that encode these reductases. These stereospecific carbonyl reductases have anti-Prelog selectivity and have specificities that are useful for fine biochemical synthesis.
摘要:
A system and method is provided for enhancing a region of interest in a medical image to improve its visibility. A region of interest is first identified in the medical image, such as identifying a breast region in a mammography image. The identified region of interest is then enhanced using an image processing technique, for example by adjusting the intensity or contrast, or by performing edge enhancement. Other regions of the medical image outside the region of interest remain unaltered, or may be diminished, such that the clarity of the region of interest is improved in comparison with the other regions of the medical image. A user viewing the enhanced image is less distracted by the non-enhanced regions and is not required to adjust the image on his or her own. The user can more quickly and effectively review the medical image to identify abnormalities and diagnose disease.
摘要:
An apparatus, a computer-readable medium and a method of detecting cancer masses using mammography are described. From an input image, an iris contrast map and an iris ring filter response map of the input image are generated. Potential abnormal mass candidates are identified by locating those masses whose iris contrast value above a predetermined contrast threshold and whose iris ring filter response is above a predetermined response threshold. After the potential abnormal mass candidates are identified, candidates that are less likely to be abnormal can be eliminated.