摘要:
A microlithography projection exposure system has an illumination system with an illumination optical system. The latter can have at least one diffractive optical element, which is divided into multiple adjacently arranged individual elements, each of which has one specified bundle-forming and polarizing effect.
摘要:
In some embodiments, a microlithography projection exposure system has an illumination system with an illumination optical system. The latter can have at least one diffractive optical element, which is divided into multiple adjacently arranged individual elements, each of which has one specified bundle-forming and polarizing effect. The at least one diffractive optical element can be produced as follows: First a bundle formation substrate is optically polished on one joining side. Then the bundle formation substrate is joined to an optically doubly refracting polarization formation substrate to form an optical raw element. Then bundle-forming structures are applied into the bundle formation substrate, the latter being divided corresponding to the later individual elements. The layer thickness of the polarization formation substrate at the location of specified individual elements can then removed as far as the polished joining side of the bundle formation substrate. The result can be a diffractive optical element in which at least two different types of individual elements with different specified bundle-forming and polarizing effect can be produced with high structural precision.
摘要:
A head-mounted optical direct visualization system has at least one optical deflecting device (120) with an optical end element (128) for deflecting a virtual image generated by an image source (230) onto the optical end element (128). The virtual image is emitted through the optical end element into the field of view in front of the eyes of the user. The optical deflecting device (120) is attached to the head of the user with the aid of a frame (130). The task of the invention is to configure such a conventional direct visualization system so as to be better adaptable to the requirements of the anatomical and optical features of the user and the application-specific viewing requirements. This task is solved with an adjusting device (140), which is fixed to the frame (130), for variably changing the position of at least the optical end element (128) essentially in a plane parallel to the field of view of the user.
摘要:
A head-mounted optical direct visualization system has at least one optical deflecting device (120) with an optical end element (128) for deflecting a virtual image generated by an image source (230) onto the optical end element (128). The virtual image is emitted through the optical end element into the field of view in front of the eyes of the user. The optical deflecting device (120) is attached to the head of the user with the aid of a frame (130). The task of the invention is to configure such a conventional direct visualization system so as to be better adaptable to the requirements of the anatomical and optical features of the user and the application-specific viewing requirements. This task is solved with an adjusting device (140), which is fixed to the frame (130), for variably changing the position of at least the optical end element (128) essentially in a plane parallel to the field of view of the user.
摘要:
A process and an apparatus are used for molding optical lenses from a thermosettable plastic material. Two molding shells having surfaces of a predetermined shape are arranged at a distance relative to one another and are sealed at their periphery. The plastic material is brought into the gap enclosed by the surfaces between the molding shells. At least one of the surfaces is deformed from an initial shape into the predetermined shape immediately prior to the bringing in of the plastic material and depending on predetermined data.
摘要:
The invention is directed to a highly stable CO.sub.2 waveguide laser wherein a resonator block is used which is made of a material having a low thermal expansion coefficient. The resonator block includes a window which is transparent for the wavelength of the laser. Laser reflectors are provided which are mounted by wringing to the resonator body and define a vacuum-tight seal of the resonator body. In this way, the resonator block has a permanently defined adjustment.
摘要:
Apparatus for the spatially resolved determination of the refractive power distribution of an optical element, with a light source unit for illuminating the optical element with an extended pencil of rays, includes a first multi hole screen for the production of a first number of beam pencils, a spatially resolving detector, and a computing unit. A controllable manipulator is arranged before or after the first multi hole screen. The first multi hole screen and the manipulator are transmissive only for a second number of beam pencils, the second number being smaller than the first number but greater than unity. The measurement principle of the apparatus corresponds to that of a Hartmann wavefront sensor.