摘要:
A system and method for adjusting pictures minimizes the impact on graphics processing performance of a discrete processor. A hybrid system configuration includes the discrete processor and an integrated processor, where the discrete processor typically consumes more power and provides greater processing performance compared with the integrated processor. A picture is produced by a video or graphics engine of a discrete processor within a hybrid system. Each picture is then transferred to a back buffer in the host processing memory. The picture is analyzed to produce picture analysis results that are used to generate adjustment settings. The back buffer is swapped to become the front buffer and the adjustment settings are applied to the picture by an integrated processor to display an adjusted picture. The adjustment may be used in conjunction with power saving techniques to maintain the image quality when display backlighting is reduced.
摘要:
A system and method for adjusting pictures minimizes the impact on graphics processing performance of a discrete processor. A hybrid system configuration includes the discrete processor and an integrated processor, where the discrete processor typically consumes more power and provides greater processing performance compared with the integrated processor. A picture is produced by a video or graphics engine of a discrete processor within a hybrid system. Each picture is then transferred to a back buffer in the host processing memory. The picture is analyzed to produce picture analysis results that are used to generate adjustment settings. The back buffer is swapped to become the front buffer and the adjustment settings are applied to the picture by an integrated processor to display an adjusted picture. The adjustment may be used in conjunction with power saving techniques to maintain the image quality when display backlighting is reduced.
摘要:
A system is presented that is configured to reduce power consumption when performing processing tasks. The system includes a first processing entity capable of performing a set of operations, and a second processing entity configured to consume less power than the first processing entity and capable of performing a subset of operations that is part of the set of operations. During system operation, the second processing entity is configured to perform the subset of operations instead of the first processing entity.
摘要:
A system and method for decoding high definition video content using multiple processors reduces the likelihood of dropping video frames. Each of the multiple processors produces and stores a portion of a decoded video frame in its dedicated frame buffer. A region of a reference frame that is needed to produce a first portion of a decoded video frame, but that is not stored in the frame buffer coupled to the processor that will decode the first portion, is copied to the frame buffer. The size of the region needed may vary based on a maximum possible motion vector offset. The size of the region that is copied may be dynamic and based on a maximum motion vector offset for each particular reference frame.
摘要:
One embodiment of a video processor includes a first media processing device coupled to a first memory and a second media processing device coupled to a second memory. The second media processing device is coupled to the first media processing device via a scalable bus. A software driver configures the media processing devices to provide video processing functionality. The scalable bus carries video data processed by the second media processing device to the first media processing device where the data is combined with video data processed by the first media processing device to produce a processed video frame. The first media processing device transmits the combined video data to a display device. Each media processing device is configured to process separate portions of the video data, thereby enabling the video processor to process video data more quickly than a single-GPU video processor.
摘要:
One embodiment of a video processor includes a first media processing device coupled to a first memory and a second media processing device coupled to a second memory. The second media processing device is coupled to the first media processing device via a scalable bus. A software driver configures the media processing devices to provide video processing functionality. The scalable bus carries video data processed by the second media processing device to the first media processing device where the data is combined with video data processed by the first media processing device to produce a processed video frame. The first media processing device transmits the combined video data to a display device. Each media processing device is configured to process separate portions of the video data, thereby enabling the video processor to process video data more quickly than a single-GPU video processor.
摘要:
Split-frame post-processing techniques are used in a programmable video post processing engine. A frame of video data is divided into a processing region and a control region that contain either different portions of the frame or copies of a portion of the frame. Post-processing operations are performed for the processing region but not for the control region. The processing and control regions are then displayed simultaneously on the same display device (e.g., side by side), facilitating visual comparisons of images with and without post-processing.
摘要:
One embodiment of a video processor includes a first media processing device coupled to a first memory and a second media processing device coupled to a second memory. The second media processing device is coupled to the first media processing device via a scalable bus. A software driver configures the media processing devices to provide video processing functionality. The scalable bus carries video data processed by the second media processing device to the first media processing device where the data is combined with video data processed by the first media processing device to produce a processed video frame. The first media processing device transmits the combined video data to a display device. Each media processing device is configured to process separate portions of the video data, thereby enabling the video processor to process video data more quickly than a single-GPU video processor.
摘要:
A system for processing video data includes a host processor, a first media processing device coupled to a first buffer, the first media processing device configured to perform a first processing task on a frame of video data, and a second media processing device coupled to a second buffer, the second media processing device configured to perform a second processing task on the processed frame of video data. The architecture allows the two devices to have asymmetric video processing capabilities. Thus, the first device may advantageously perform a first task, such as decoding, while the second device performs a second task, such as post processing, according to the respective capabilities of each device, thereby increasing processing efficiency relative to prior art systems. Further, one driver may be used for both devices, enabling applications to take advantage of the system's accelerated processing capabilities without requiring code changes.
摘要:
Video filtering using a programmable graphics processor is described. The programmable graphics processor may be programmed to complete a plurality of video filtering operations in a single pass through a fragment-processing pipeline within the programmable graphics processor. Video filtering functions such as deinterlacing, chroma up-sampling, scaling, and deblocking may be performed by the fragment-processing pipeline. The fragment-processing pipeline may be programmed to perform motion adaptive deinterlacing, wherein a spatially variant filter determines, on a pixel basis, whether a “bob”, a “blend”, or a “weave” operation should be used to process an interlaced image.