摘要:
A split gate type nonvolatile semiconductor memory device and a method of fabricating a split gate type nonvolatile semiconductor memory device are provided. A gate insulating layer and a floating-gate conductive layer are formed on a semiconductor substrate. A mask layer pattern is formed on the floating-gate conductive layer to define a first opening extending in a first direction. First sacrificial spacers having a predetermined width are formed on both sidewalls corresponding to the mask layer pattern. An inter-gate insulating layer is formed on the floating-gate conductive layer. The first sacrificial spacers are removed, and the floating-gate conductive layer is etched until the gate insulating layer is exposed. A tunneling insulating layer is formed on an exposed portion of the floating-gate conductive layer. A control-gate conductive layer is formed on a surface of the semiconductor substrate. Second sacrificial spacers having predetermined widths are formed on the control-gate conductive layer. A split control gate is formed in the first opening, by etching the exposed control-gate conductive layer. The remaining mask layer pattern and inter-gate insulating layer are etched until the floating-gate conductive layer is exposed. The exposed floating-gate conductive layer is etched to form a split floating gate in the first opening.
摘要:
A split gate type nonvolatile semiconductor memory device and a method of fabricating a split gate type nonvolatile semiconductor memory device are provided. A gate insulating layer and a floating-gate conductive layer are formed on a semiconductor substrate. A mask layer pattern is formed on the floating-gate conductive layer to define a first opening extending in a first direction. First sacrificial spacers having a predetermined width are formed on both sidewalls corresponding to the mask layer pattern. An inter-gate insulating layer is formed on the floating-gate conductive layer. The first sacrificial spacers are removed, and the floating-gate conductive layer is etched until the gate insulating layer is exposed. A tunneling insulating layer is formed on an exposed portion of the floating-gate conductive layer. A control-gate conductive layer is formed on a surface of the semiconductor substrate. Second sacrificial spacers having predetermined widths are formed on the control-gate conductive layer. A split control gate is formed in the first opening, by etching the exposed control-gate conductive layer. The remaining mask layer pattern and inter-gate insulating layer are etched until the floating-gate conductive layer is exposed. The exposed floating-gate conductive layer is etched to form a split floating gate in the first opening.
摘要:
A split gate type nonvolatile semiconductor memory device and a method of fabricating a split gate type nonvolatile semiconductor memory device are provided. A gate insulating layer and a floating-gate conductive layer are formed on a semiconductor substrate. A mask layer pattern is formed on the floating-gate conductive layer to define a first opening extending in a first direction. First sacrificial spacers having a predetermined width are formed on both sidewalls corresponding to the mask layer pattern. An inter-gate insulating layer is formed on the floating-gate conductive layer. The first sacrificial spacers are removed, and the floating-gate conductive layer is etched until the gate insulating layer is exposed. A tunneling insulating layer is formed on an exposed portion of the floating-gate conductive layer. A control-gate conductive layer is formed on a surface of the semiconductor substrate. Second sacrificial spacers having predetermined widths are formed on the control-gate conductive layer. A split control gate is formed in the first opening, by etching the exposed control-gate conductive layer. The remaining mask layer pattern and inter-gate insulating layer are etched until the floating-gate conductive layer is exposed. The exposed floating-gate conductive layer is etched to form a split floating gate in the first opening.
摘要:
A split gate type nonvolatile semiconductor memory device and a method of fabricating a split gate type nonvolatile semiconductor memory device are provided. A gate insulating layer and a floating-gate conductive layer are formed on a semiconductor substrate. A mask layer pattern is formed on the floating-gate conductive layer to define a first opening extending in a first direction. First sacrificial spacers having a predetermined width are formed on both sidewalls corresponding to the mask layer pattern. An inter-gate insulating layer is formed on the floating-gate conductive layer. The first sacrificial spacers are removed, and the floating-gate conductive layer is etched until the gate insulating layer is exposed. A tunneling insulating layer is formed on an exposed portion of the floating-gate conductive layer. A control-gate conductive layer is formed on a surface of the semiconductor substrate. Second sacrificial spacers having predetermined widths are formed on the control-gate conductive layer. A split control gate is formed in the first opening, by etching the exposed control-gate conductive layer. The remaining mask layer pattern and inter-gate insulating layer are etched until the floating-gate conductive layer is exposed. The exposed floating-gate conductive layer is etched to form a split floating gate in the first opening.
摘要:
Provided are a local SONOS-type memory device and a method of manufacturing the same. The device includes a gate oxide layer formed on a silicon substrate; a conductive spacer and a dummy spacer, which are formed on the gate oxide layer and separated apart from each other, the conductive spacer and the dummy spacer having round surfaces that face outward; a pair of insulating spacers formed on a sidewall of the conductive spacer and a sidewall of the dummy spacer which face each other; an ONO layer formed in a self-aligned manner between the pair of insulating spacers; a conductive layer formed on the ONO layer in a self-aligned manner between the pair of insulating spacers; and source and drain regions formed in the silicon substrate outside the conductive spacer and the dummy spacer.
摘要:
Provided are a local SONOS-type memory device and a method of manufacturing the same. The device includes a gate oxide layer formed on a silicon substrate; a conductive spacer and a dummy spacer, which are formed on the gate oxide layer and separated apart from each other, the conductive spacer and the dummy spacer having round surfaces that face outward; a pair of insulating spacers formed on a sidewall of the conductive spacer and a sidewall of the dummy spacer which face each other; an ONO layer formed in a self-aligned manner between the pair of insulating spacers; a conductive layer formed on the ONO layer in a self-aligned manner between the pair of insulating spacers; and source and drain regions formed in the silicon substrate outside the conductive spacer and the dummy spacer.
摘要:
A tunneling dielectric layer, a charge trapping layer, a first length defining layer, and a second length defining layer are sequentially deposited on a semiconductor substrate. These layers are sequentially patterned. Exposed both sidewalls of the first length defining layer first pattern are recessed by selective side etching. After forming a blocking layer for covering the exposed charge trapping layer and a gate layer for filling the recessed portion, the gate layer is patterned to form spacer shaped gates. Dopant regions for source and drain regions are formed on the semiconductor substrate adjacent the gates.
摘要:
A tunneling dielectric layer, a charge trapping layer, a first length defining layer, and a second length defining layer are sequentially deposited on a semiconductor substrate. These layers are sequentially patterned. Exposed both sidewalls of the first length defining layer first pattern are recessed by selective side etching. After forming a blocking layer for covering the exposed charge trapping layer and a gate layer for filling the recessed portion, the gate layer is patterned to form spacer shaped gates. Dopant regions for source and drain regions are formed on the semiconductor substrate adjacent the gates.
摘要:
Provided are a local SONOS-type memory device and a method of manufacturing the same. The device includes a gate oxide layer formed on a silicon substrate; a conductive spacer and a dummy spacer, which are formed on the gate oxide layer and separated apart from each other, the conductive spacer and the dummy spacer having round surfaces that face outward; a pair of insulating spacers formed on a sidewall of the conductive spacer and a sidewall of the dummy spacer which face each other; an ONO layer formed in a self-aligned manner between the pair of insulating spacers; a conductive layer formed on the ONO layer in a self-aligned manner between the pair of insulating spacers; and source and drain regions formed in the silicon substrate outside the conductive spacer and the dummy spacer.
摘要:
Provided are a local SONOS-type memory device and a method of manufacturing the same. The device includes a gate oxide layer formed on a silicon substrate; a conductive spacer and a dummy spacer, which are formed on the gate oxide layer and separated apart from each other, the conductive spacer and the dummy spacer having round surfaces that face outward; a pair of insulating spacers formed on a sidewall of the conductive spacer and a sidewall of the dummy spacer which face each other; an ONO layer formed in a self-aligned manner between the pair of insulating spacers; a conductive layer formed on the ONO layer in a self-aligned manner between the pair of insulating spacers; and source and drain regions formed in the silicon substrate outside the conductive spacer and the dummy spacer.